These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 29924836)

  • 1. Experimental research on the performances of water jet devices and proposing the parameters of borehole hydraulic mining for oil shale.
    Wen J; Chen C; Campos U
    PLoS One; 2018; 13(6):e0199027. PubMed ID: 29924836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of oil shale in situ mining on groundwater environment: A water-rock interaction study.
    Hu S; Xiao C; Liang X; Cao Y; Wang X; Li M
    Chemosphere; 2019 Aug; 228():384-389. PubMed ID: 31042612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Nozzle Geometry on Characteristics of Submerged Gas Jet and Bubble Noise.
    Bie HY; Ye JJ; Hao ZR
    J Lab Autom; 2016 Oct; 21(5):652-9. PubMed ID: 25931138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water Availability for Shale Gas Development in Sichuan Basin, China.
    Yu M; Weinthal E; Patiño-Echeverri D; Deshusses MA; Zou C; Ni Y; Vengosh A
    Environ Sci Technol; 2016 Mar; 50(6):2837-45. PubMed ID: 26881457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A preliminary study on the eco-environmental geological issue of in-situ oil shale mining by a physical model.
    Hu S; Wu H; Liang X; Xiao C; Zhao Q; Cao Y; Han X
    Chemosphere; 2022 Jan; 287(Pt 1):131987. PubMed ID: 34474385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The water footprint of hydraulic fracturing in Sichuan Basin, China.
    Zou C; Ni Y; Li J; Kondash A; Coyte R; Lauer N; Cui H; Liao F; Vengosh A
    Sci Total Environ; 2018 Jul; 630():349-356. PubMed ID: 29482143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical Modeling of Gas and Water Flow in Shale Gas Formations with a Focus on the Fate of Hydraulic Fracturing Fluid.
    Edwards RWJ; Doster F; Celia MA; Bandilla KW
    Environ Sci Technol; 2017 Dec; 51(23):13779-13787. PubMed ID: 29086564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of Effective Pyrolysis Zone and Heat Loss in Oil Shale Reservoir with Random Fractures.
    Yu H; Tang J; Zhang X; Ren L; Zhang X
    ACS Omega; 2023 Dec; 8(48):45687-45699. PubMed ID: 38075776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergies and Tradeoffs Among Environmental Impacts Under Conservation Planning of Shale Gas Surface Infrastructure.
    Milt AW; Gagnolet T; Armsworth PR
    Environ Manage; 2016 Jan; 57(1):21-30. PubMed ID: 26275668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the forming mechanism of the cleaning airflow of pulse-jet fabric filters.
    Cai J; Hao W; Zhang C; Yu J; Wang T
    J Air Waste Manag Assoc; 2017 Dec; 67(12):1273-1287. PubMed ID: 28379118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water intensity assessment of shale gas resources in the Wattenberg field in northeastern Colorado.
    Goodwin S; Carlson K; Knox K; Douglas C; Rein L
    Environ Sci Technol; 2014 May; 48(10):5991-5. PubMed ID: 24749865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study and application of a high-pressure water jet multi-functional flow test system.
    Shi H; Li G; Huang Z; Li J; Zhang Y
    Rev Sci Instrum; 2015 Dec; 86(12):125111. PubMed ID: 26724077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilization of ultrasound to enhance high-speed water jet effects.
    Foldyna J; Sitek L; Svehla B; Svehla S
    Ultrason Sonochem; 2004 May; 11(3-4):131-7. PubMed ID: 15081969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water footprint of shale gas development in China in the carbon neutral era.
    Zhong C; Hou D; Liu B; Zhu S; Wei T; Gehman J; Alessi DS; Qian PY
    J Environ Manage; 2023 Apr; 331():117238. PubMed ID: 36681031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Searching for anomalous methane in shallow groundwater near shale gas wells.
    Li Z; You C; Gonzales M; Wendt AK; Wu F; Brantley SL
    J Contam Hydrol; 2016 Dec; 195():23-30. PubMed ID: 27875753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of water use for hydraulic fracturing for unconventional oil and gas versus conventional oil.
    Scanlon BR; Reedy RC; Nicot JP
    Environ Sci Technol; 2014 Oct; 48(20):12386-93. PubMed ID: 25233450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CBM drilling technical parameter optimization methodology and software development: a case study of LUAN mining area.
    Guo Y; Cao L; Sang S; Wang Y; Zhang X; Feng X
    An Acad Bras Cienc; 2021; 93(1):e20190346. PubMed ID: 33787750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drinking water while fracking: now and in the future.
    Brantley SL
    Ground Water; 2015; 53(1):21-3. PubMed ID: 25713828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review on risk assessment techniques for hydraulic fracturing water and produced water management implemented in onshore unconventional oil and gas production.
    Torres L; Yadav OP; Khan E
    Sci Total Environ; 2016 Jan; 539():478-493. PubMed ID: 26386446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological investigations of fibrogenic action of Estonian oil shale dust.
    Küng VA
    Environ Health Perspect; 1979 Jun; 30():153-5. PubMed ID: 221215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.