These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Design of turbulent tangential micro-mixers that mix liquids on the nanosecond time scale. Mitic S; van Nieuwkasteele JW; van den Berg A; de Vries S Anal Biochem; 2015 Jan; 469():19-26. PubMed ID: 25447461 [TBL] [Abstract][Full Text] [Related]
3. Three-dimensional multihelical microfluidic mixers for rapid mixing of liquids. Verma MK; Ganneboyina SR; R VR; Ghatak A Langmuir; 2008 Mar; 24(5):2248-51. PubMed ID: 18197716 [TBL] [Abstract][Full Text] [Related]
4. Optimization of a microfluidic mixer for studying protein folding kinetics. Hertzog DE; Ivorra B; Mohammadi B; Bakajin O; Santiago JG Anal Chem; 2006 Jul; 78(13):4299-306. PubMed ID: 16808436 [TBL] [Abstract][Full Text] [Related]
5. Advances in turbulent mixing techniques to study microsecond protein folding reactions. Kathuria SV; Chan A; Graceffa R; Paul Nobrega R; Robert Matthews C; Irving TC; Perot B; Bilsel O Biopolymers; 2013 Nov; 99(11):888-96. PubMed ID: 23868289 [TBL] [Abstract][Full Text] [Related]
6. Ultrafast microfluidic mixer with three-dimensional flow focusing for studies of biochemical kinetics. Gambin Y; Simonnet C; VanDelinder V; Deniz A; Groisman A Lab Chip; 2010 Mar; 10(5):598-609. PubMed ID: 20162235 [TBL] [Abstract][Full Text] [Related]
7. Microfluidic mixers for the investigation of rapid protein folding kinetics using synchrotron radiation circular dichroism spectroscopy. Kane AS; Hoffmann A; Baumgärtel P; Seckler R; Reichardt G; Horsley DA; Schuler B; Bakajin O Anal Chem; 2008 Dec; 80(24):9534-41. PubMed ID: 19072266 [TBL] [Abstract][Full Text] [Related]
8. Improvements in mixing time and mixing uniformity in devices designed for studies of protein folding kinetics. Yao S; Bakajin O Anal Chem; 2007 Aug; 79(15):5753-9. PubMed ID: 17583912 [TBL] [Abstract][Full Text] [Related]
9. Microfluidic 3D Helix Mixers. Salieb-Beugelaar GB; Gonçalves D; Wolf MP; Hunziker P Micromachines (Basel); 2016 Oct; 7(10):. PubMed ID: 30404361 [TBL] [Abstract][Full Text] [Related]
10. Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets. Bringer MR; Gerdts CJ; Song H; Tice JD; Ismagilov RF Philos Trans A Math Phys Eng Sci; 2004 May; 362(1818):1087-104. PubMed ID: 15306486 [TBL] [Abstract][Full Text] [Related]
11. Ultrafast microfluidic mixer for tracking the early folding kinetics of human telomere G-quadruplex. Li Y; Liu C; Feng X; Xu Y; Liu BF Anal Chem; 2014 May; 86(9):4333-9. PubMed ID: 24725010 [TBL] [Abstract][Full Text] [Related]
12. 3D Printed Microfluidic Mixers-A Comparative Study on Mixing Unit Performances. Enders A; Siller IG; Urmann K; Hoffmann MR; Bahnemann J Small; 2019 Jan; 15(2):e1804326. PubMed ID: 30548194 [TBL] [Abstract][Full Text] [Related]
13. Remotely powered distributed microfluidic pumps and mixers based on miniature diodes. Chang ST; Beaumont E; Petsev DN; Velev OD Lab Chip; 2008 Jan; 8(1):117-24. PubMed ID: 18094769 [TBL] [Abstract][Full Text] [Related]
14. Designing for chaos: applications of chaotic advection at the microscale. Stremler MA; Haselton FR; Aref H Philos Trans A Math Phys Eng Sci; 2004 May; 362(1818):1019-36. PubMed ID: 15306482 [TBL] [Abstract][Full Text] [Related]
15. Ultrafast microfluidic mixer and freeze-quenching device. Lin Y; Gerfen GJ; Rousseau DL; Yeh SR Anal Chem; 2003 Oct; 75(20):5381-6. PubMed ID: 14710815 [TBL] [Abstract][Full Text] [Related]
16. Development of novel micro swirl mixer for producing fine metal oxide nanoparticles by continuous supercritical hydrothermal method. Kawasaki S; Sue K; Ookawara R; Wakashima Y; Suzuki A J Oleo Sci; 2010; 59(10):557-62. PubMed ID: 20877149 [TBL] [Abstract][Full Text] [Related]
17. Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low Reynolds numbers. Xia HM; Wan SY; Shu C; Chew YT Lab Chip; 2005 Jul; 5(7):748-55. PubMed ID: 15970968 [TBL] [Abstract][Full Text] [Related]