These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 29924849)

  • 1. Escherichia coli β-clamp slows down DNA polymerase I dependent nick translation while accelerating ligation.
    Bhardwaj A; Ghose D; Thakur KG; Dutta D
    PLoS One; 2018; 13(6):e0199559. PubMed ID: 29924849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Okazaki fragment maturation in yeast. II. Cooperation between the polymerase and 3'-5'-exonuclease activities of Pol delta in the creation of a ligatable nick.
    Jin YH; Ayyagari R; Resnick MA; Gordenin DA; Burgers PM
    J Biol Chem; 2003 Jan; 278(3):1626-33. PubMed ID: 12424237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Labeling of DNA Probes by Nick Translation.
    Green MR; Sambrook J
    Cold Spring Harb Protoc; 2020 Jul; 2020(7):100602. PubMed ID: 32611783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the mechanisms of ribonucleotide excision repair in Escherichia coli.
    Vaisman A; McDonald JP; Noll S; Huston D; Loeb G; Goodman MF; Woodgate R
    Mutat Res; 2014 Mar; 761():21-33. PubMed ID: 24495324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Idling by DNA polymerase delta maintains a ligatable nick during lagging-strand DNA replication.
    Garg P; Stith CM; Sabouri N; Johansson E; Burgers PM
    Genes Dev; 2004 Nov; 18(22):2764-73. PubMed ID: 15520275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-molecule analysis of the Escherichia coli replisome and use of clamps to bypass replication barriers.
    Georgescu RE; Yao NY; O'Donnell M
    FEBS Lett; 2010 Jun; 584(12):2596-605. PubMed ID: 20388515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multifunctional DNA polymerase I involves in the maturation of Okazaki fragments during the lagging-strand DNA synthesis in Helicobacter pylori.
    Cheng YW; Chen CY
    FEBS J; 2021 Feb; 288(3):884-901. PubMed ID: 32484277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-replicative nick translation occurs on the lagging strand during prolonged depletion of DNA ligase I in Saccharomyces cerevisiae.
    Koussa NC; Smith DJ
    G3 (Bethesda); 2021 Aug; 11(8):. PubMed ID: 34849819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Escherichia coli dnaN159 mutant displays altered DNA polymerase usage and chronic SOS induction.
    Sutton MD
    J Bacteriol; 2004 Oct; 186(20):6738-48. PubMed ID: 15466025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of polymerase collision release from sliding clamps on the lagging strand.
    Georgescu RE; Kurth I; Yao NY; Stewart J; Yurieva O; O'Donnell M
    EMBO J; 2009 Oct; 28(19):2981-91. PubMed ID: 19696739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sliding-clamp toolbelt binds high- and low-fidelity DNA polymerases simultaneously.
    Indiani C; McInerney P; Georgescu R; Goodman MF; O'Donnell M
    Mol Cell; 2005 Sep; 19(6):805-15. PubMed ID: 16168375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A four-point molecular handover during Okazaki maturation.
    Botto MM; Borsellini A; Lamers MH
    Nat Struct Mol Biol; 2023 Oct; 30(10):1505-1515. PubMed ID: 37620586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Okazaki fragment processing: modulation of the strand displacement activity of DNA polymerase delta by the concerted action of replication protein A, proliferating cell nuclear antigen, and flap endonuclease-1.
    Maga G; Villani G; Tillement V; Stucki M; Locatelli GA; Frouin I; Spadari S; Hübscher U
    Proc Natl Acad Sci U S A; 2001 Dec; 98(25):14298-303. PubMed ID: 11724925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resolving individual steps of Okazaki-fragment maturation at a millisecond timescale.
    Stodola JL; Burgers PM
    Nat Struct Mol Biol; 2016 May; 23(5):402-8. PubMed ID: 27065195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Escherichia coli DNA polymerase I in conferring viability upon the dnaN159 mutant strain.
    Maul RW; Sanders LH; Lim JB; Benitez R; Sutton MD
    J Bacteriol; 2007 Jul; 189(13):4688-95. PubMed ID: 17449610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient generation of displaced single-stranded DNA during nick translation.
    Lundquist RC; Olivera BM
    Cell; 1982 Nov; 31(1):53-60. PubMed ID: 6218882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA polymerase I proofreading exonuclease activity is required for endonuclease V repair pathway both in vitro and in vivo.
    Su KY; Lin LI; Goodman SD; Yen RS; Wu CY; Chang WC; Yang YC; Cheng WC; Fang WH
    DNA Repair (Amst); 2018 Apr; 64():59-67. PubMed ID: 29522920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Replisome dynamics and use of DNA trombone loops to bypass replication blocks.
    Yao NY; O'Donnell M
    Mol Biosyst; 2008 Nov; 4(11):1075-84. PubMed ID: 18931783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pol III proofreading activity prevents lesion bypass as evidenced by its molecular signature within E.coli cells.
    Pages V; Janel-Bintz R; Fuchs RP
    J Mol Biol; 2005 Sep; 352(3):501-9. PubMed ID: 16111701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The excision of 3' penultimate errors by DNA polymerase I and its role in endonuclease V-mediated DNA repair.
    Lee CC; Yang YC; Goodman SD; Lin CJ; Chen YA; Wang YT; Cheng WC; Lin LI; Fang WH
    DNA Repair (Amst); 2013 Nov; 12(11):899-911. PubMed ID: 24012058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.