BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 29924860)

  • 1. CRISPR/Cas-based customization of pooled CRISPR libraries.
    Kweon J; Kim DE; Jang AH; Kim Y
    PLoS One; 2018; 13(6):e0199473. PubMed ID: 29924860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput genetic screens using CRISPR-Cas9 system.
    Kweon J; Kim Y
    Arch Pharm Res; 2018 Sep; 41(9):875-884. PubMed ID: 29637495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying synthetic lethal targets using CRISPR/Cas9 system.
    Dhanjal JK; Radhakrishnan N; Sundar D
    Methods; 2017 Dec; 131():66-73. PubMed ID: 28710008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pooled Lentiviral CRISPR-Cas9 Screens for Functional Genomics in Mammalian Cells.
    Aregger M; Chandrashekhar M; Tong AHY; Chan K; Moffat J
    Methods Mol Biol; 2019; 1869():169-188. PubMed ID: 30324523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation and Design of Genome-Wide CRISPR/SpCas9 Knockout Screens.
    Hart T; Tong AHY; Chan K; Van Leeuwen J; Seetharaman A; Aregger M; Chandrashekhar M; Hustedt N; Seth S; Noonan A; Habsid A; Sizova O; Nedyalkova L; Climie R; Tworzyanski L; Lawson K; Sartori MA; Alibeh S; Tieu D; Masud S; Mero P; Weiss A; Brown KR; Usaj M; Billmann M; Rahman M; Constanzo M; Myers CL; Andrews BJ; Boone C; Durocher D; Moffat J
    G3 (Bethesda); 2017 Aug; 7(8):2719-2727. PubMed ID: 28655737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas-mediated knock-in via non-homologous end-joining in the crustacean Daphnia magna.
    Kumagai H; Nakanishi T; Matsuura T; Kato Y; Watanabe H
    PLoS One; 2017; 12(10):e0186112. PubMed ID: 29045453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [High-throughput functional screening using CRISPR/Cas9 system].
    Wang GC; Ming M; Ye YZ; Xi JZ
    Yi Chuan; 2016 May; 38(5):391-401. PubMed ID: 27232487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing libraries for pooled CRISPR functional screens of long noncoding RNAs.
    Pulido-Quetglas C; Johnson R
    Mamm Genome; 2022 Jun; 33(2):312-327. PubMed ID: 34533605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo.
    Jiang C; Mei M; Li B; Zhu X; Zu W; Tian Y; Wang Q; Guo Y; Dong Y; Tan X
    Cell Res; 2017 Mar; 27(3):440-443. PubMed ID: 28117345
    [No Abstract]   [Full Text] [Related]  

  • 10. On-target activity predictions enable improved CRISPR-dCas9 screens in bacteria.
    Calvo-Villamañán A; Ng JW; Planel R; Ménager H; Chen A; Cui L; Bikard D
    Nucleic Acids Res; 2020 Jun; 48(11):e64. PubMed ID: 32352514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pooled CRISPR-Based Genetic Screens in Mammalian Cells.
    Chan K; Tong AHY; Brown KR; Mero P; Moffat J
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31545321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening.
    Joung J; Konermann S; Gootenberg JS; Abudayyeh OO; Platt RJ; Brigham MD; Sanjana NE; Zhang F
    Nat Protoc; 2017 Apr; 12(4):828-863. PubMed ID: 28333914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9 Gene Targeting in Primary Mouse Bone Marrow-Derived Macrophages.
    Bailis W
    Methods Mol Biol; 2020; 2097():223-230. PubMed ID: 31776929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/Cas9 screening using unique molecular identifiers.
    Schmierer B; Botla SK; Zhang J; Turunen M; Kivioja T; Taipale J
    Mol Syst Biol; 2017 Oct; 13(10):945. PubMed ID: 28993443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery of Zika Virus Dependency and Restriction Factors Using Flow-Based Arrayed CRISPR Screening for Identification of Targets (FACS-IT).
    McDougall WM; Kandpal M; Perreira JM; Brass AL
    Methods Mol Biol; 2020; 2142():215-234. PubMed ID: 32367370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-Wide CRISPR/Cas9 Screening for High-Throughput Functional Genomics in Human Cells.
    Zhu S; Zhou Y; Wei W
    Methods Mol Biol; 2017; 1656():175-181. PubMed ID: 28808970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of CRISPR Libraries for Functional Screening.
    Carstens CP; Felts KA; Johns SE
    Methods Mol Biol; 2018; 1772():139-150. PubMed ID: 29754226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A CRISPR-Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection.
    Zhou W; Hu L; Ying L; Zhao Z; Chu PK; Yu XF
    Nat Commun; 2018 Nov; 9(1):5012. PubMed ID: 30479331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9-Mediated Deletion of Large Genomic Fragments in Soybean.
    Cai Y; Chen L; Sun S; Wu C; Yao W; Jiang B; Han T; Hou W
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30513774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Perspective on the Future of High-Throughput RNAi Screening: Will CRISPR Cut Out the Competition or Can RNAi Help Guide the Way?
    Taylor J; Woodcock S
    J Biomol Screen; 2015 Sep; 20(8):1040-51. PubMed ID: 26048892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.