These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 29925020)

  • 1. Redox Modulation of Oligomeric State in Proline Utilization A.
    Korasick DA; Campbell AC; Christgen SL; Chakravarthy S; White TA; Becker DF; Tanner JJ
    Biophys J; 2018 Jun; 114(12):2833-2843. PubMed ID: 29925020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a bifunctional PutA homologue from Bradyrhizobium japonicum and identification of an active site residue that modulates proline reduction of the flavin adenine dinucleotide cofactor.
    Krishnan N; Becker DF
    Biochemistry; 2005 Jun; 44(25):9130-9. PubMed ID: 15966737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure.
    Korasick DA; Singh H; Pemberton TA; Luo M; Dhatwalia R; Tanner JJ
    FEBS J; 2017 Sep; 284(18):3029-3049. PubMed ID: 28710792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic and thermodynamic analysis of Bradyrhizobium japonicum PutA-membrane associations.
    Zhang W; Krishnan N; Becker DF
    Arch Biochem Biophys; 2006 Jan; 445(1):174-83. PubMed ID: 16310755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unique structural features and sequence motifs of proline utilization A (PutA).
    Singh RK; Tanner JJ
    Front Biosci (Landmark Ed); 2012 Jan; 17(2):556-68. PubMed ID: 22201760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures of the PutA peripheral membrane flavoenzyme reveal a dynamic substrate-channeling tunnel and the quinone-binding site.
    Singh H; Arentson BW; Becker DF; Tanner JJ
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3389-94. PubMed ID: 24550478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic and structural characterization of tunnel-perturbing mutants in Bradyrhizobium japonicum proline utilization A.
    Arentson BW; Luo M; Pemberton TA; Tanner JJ; Becker DF
    Biochemistry; 2014 Aug; 53(31):5150-61. PubMed ID: 25046425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure, function, and mechanism of proline utilization A (PutA).
    Liu LK; Becker DF; Tanner JJ
    Arch Biochem Biophys; 2017 Oct; 632():142-157. PubMed ID: 28712849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and characterization of a class 3B proline utilization A: Ligand-induced dimerization and importance of the C-terminal domain for catalysis.
    Korasick DA; Gamage TT; Christgen S; Stiers KM; Beamer LJ; Henzl MT; Becker DF; Tanner JJ
    J Biol Chem; 2017 Jun; 292(23):9652-9665. PubMed ID: 28420730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that the C-terminal domain of a type B PutA protein contributes to aldehyde dehydrogenase activity and substrate channeling.
    Luo M; Christgen S; Sanyal N; Arentson BW; Becker DF; Tanner JJ
    Biochemistry; 2014 Sep; 53(35):5661-73. PubMed ID: 25137435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of PutA-membrane associations by flavin adenine dinucleotide reduction.
    Zhang W; Zhou Y; Becker DF
    Biochemistry; 2004 Oct; 43(41):13165-74. PubMed ID: 15476410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox-induced changes in flavin structure and roles of flavin N(5) and the ribityl 2'-OH group in regulating PutA--membrane binding.
    Zhang W; Zhang M; Zhu W; Zhou Y; Wanduragala S; Rewinkel D; Tanner JJ; Becker DF
    Biochemistry; 2007 Jan; 46(2):483-91. PubMed ID: 17209558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flavin redox state triggers conformational changes in the PutA protein from Escherichia coli.
    Zhu W; Becker DF
    Biochemistry; 2003 May; 42(18):5469-77. PubMed ID: 12731889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational change and membrane association of the PutA protein are coincident with reduction of its FAD cofactor by proline.
    Brown ED; Wood JM
    J Biol Chem; 1993 Apr; 268(12):8972-9. PubMed ID: 8473341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small-angle X-ray scattering studies of the oligomeric state and quaternary structure of the trifunctional proline utilization A (PutA) flavoprotein from Escherichia coli.
    Singh RK; Larson JD; Zhu W; Rambo RP; Hura GL; Becker DF; Tanner JJ
    J Biol Chem; 2011 Dec; 286(50):43144-53. PubMed ID: 22013066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox properties of the PutA protein from Escherichia coli and the influence of the flavin redox state on PutA-DNA interactions.
    Becker DF; Thomas EA
    Biochemistry; 2001 Apr; 40(15):4714-21. PubMed ID: 11294639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of proline analog binding on the spectroscopic and redox properties of PutA.
    Zhu W; Gincherman Y; Docherty P; Spilling CD; Becker DF
    Arch Biochem Biophys; 2002 Dec; 408(1):131-6. PubMed ID: 12485611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid reaction kinetics of proline dehydrogenase in the multifunctional proline utilization A protein.
    Moxley MA; Becker DF
    Biochemistry; 2012 Jan; 51(1):511-20. PubMed ID: 22148640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Basis for the Substrate Inhibition of Proline Utilization A by Proline.
    Korasick DA; Pemberton TA; Arentson BW; Becker DF; Tanner JJ
    Molecules; 2017 Dec; 23(1):. PubMed ID: 29295473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering a trifunctional proline utilization A chimaera by fusing a DNA-binding domain to a bifunctional PutA.
    Arentson BW; Hayes EL; Zhu W; Singh H; Tanner JJ; Becker DF
    Biosci Rep; 2016 Dec; 36(6):. PubMed ID: 27742866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.