BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 29925020)

  • 1. Redox Modulation of Oligomeric State in Proline Utilization A.
    Korasick DA; Campbell AC; Christgen SL; Chakravarthy S; White TA; Becker DF; Tanner JJ
    Biophys J; 2018 Jun; 114(12):2833-2843. PubMed ID: 29925020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a bifunctional PutA homologue from Bradyrhizobium japonicum and identification of an active site residue that modulates proline reduction of the flavin adenine dinucleotide cofactor.
    Krishnan N; Becker DF
    Biochemistry; 2005 Jun; 44(25):9130-9. PubMed ID: 15966737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure.
    Korasick DA; Singh H; Pemberton TA; Luo M; Dhatwalia R; Tanner JJ
    FEBS J; 2017 Sep; 284(18):3029-3049. PubMed ID: 28710792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic and thermodynamic analysis of Bradyrhizobium japonicum PutA-membrane associations.
    Zhang W; Krishnan N; Becker DF
    Arch Biochem Biophys; 2006 Jan; 445(1):174-83. PubMed ID: 16310755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unique structural features and sequence motifs of proline utilization A (PutA).
    Singh RK; Tanner JJ
    Front Biosci (Landmark Ed); 2012 Jan; 17(2):556-68. PubMed ID: 22201760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures of the PutA peripheral membrane flavoenzyme reveal a dynamic substrate-channeling tunnel and the quinone-binding site.
    Singh H; Arentson BW; Becker DF; Tanner JJ
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3389-94. PubMed ID: 24550478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic and structural characterization of tunnel-perturbing mutants in Bradyrhizobium japonicum proline utilization A.
    Arentson BW; Luo M; Pemberton TA; Tanner JJ; Becker DF
    Biochemistry; 2014 Aug; 53(31):5150-61. PubMed ID: 25046425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure, function, and mechanism of proline utilization A (PutA).
    Liu LK; Becker DF; Tanner JJ
    Arch Biochem Biophys; 2017 Oct; 632():142-157. PubMed ID: 28712849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and characterization of a class 3B proline utilization A: Ligand-induced dimerization and importance of the C-terminal domain for catalysis.
    Korasick DA; Gamage TT; Christgen S; Stiers KM; Beamer LJ; Henzl MT; Becker DF; Tanner JJ
    J Biol Chem; 2017 Jun; 292(23):9652-9665. PubMed ID: 28420730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that the C-terminal domain of a type B PutA protein contributes to aldehyde dehydrogenase activity and substrate channeling.
    Luo M; Christgen S; Sanyal N; Arentson BW; Becker DF; Tanner JJ
    Biochemistry; 2014 Sep; 53(35):5661-73. PubMed ID: 25137435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of PutA-membrane associations by flavin adenine dinucleotide reduction.
    Zhang W; Zhou Y; Becker DF
    Biochemistry; 2004 Oct; 43(41):13165-74. PubMed ID: 15476410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox-induced changes in flavin structure and roles of flavin N(5) and the ribityl 2'-OH group in regulating PutA--membrane binding.
    Zhang W; Zhang M; Zhu W; Zhou Y; Wanduragala S; Rewinkel D; Tanner JJ; Becker DF
    Biochemistry; 2007 Jan; 46(2):483-91. PubMed ID: 17209558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flavin redox state triggers conformational changes in the PutA protein from Escherichia coli.
    Zhu W; Becker DF
    Biochemistry; 2003 May; 42(18):5469-77. PubMed ID: 12731889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational change and membrane association of the PutA protein are coincident with reduction of its FAD cofactor by proline.
    Brown ED; Wood JM
    J Biol Chem; 1993 Apr; 268(12):8972-9. PubMed ID: 8473341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small-angle X-ray scattering studies of the oligomeric state and quaternary structure of the trifunctional proline utilization A (PutA) flavoprotein from Escherichia coli.
    Singh RK; Larson JD; Zhu W; Rambo RP; Hura GL; Becker DF; Tanner JJ
    J Biol Chem; 2011 Dec; 286(50):43144-53. PubMed ID: 22013066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox properties of the PutA protein from Escherichia coli and the influence of the flavin redox state on PutA-DNA interactions.
    Becker DF; Thomas EA
    Biochemistry; 2001 Apr; 40(15):4714-21. PubMed ID: 11294639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of proline analog binding on the spectroscopic and redox properties of PutA.
    Zhu W; Gincherman Y; Docherty P; Spilling CD; Becker DF
    Arch Biochem Biophys; 2002 Dec; 408(1):131-6. PubMed ID: 12485611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid reaction kinetics of proline dehydrogenase in the multifunctional proline utilization A protein.
    Moxley MA; Becker DF
    Biochemistry; 2012 Jan; 51(1):511-20. PubMed ID: 22148640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Basis for the Substrate Inhibition of Proline Utilization A by Proline.
    Korasick DA; Pemberton TA; Arentson BW; Becker DF; Tanner JJ
    Molecules; 2017 Dec; 23(1):. PubMed ID: 29295473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering a trifunctional proline utilization A chimaera by fusing a DNA-binding domain to a bifunctional PutA.
    Arentson BW; Hayes EL; Zhu W; Singh H; Tanner JJ; Becker DF
    Biosci Rep; 2016 Dec; 36(6):. PubMed ID: 27742866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.