BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 29925063)

  • 1. Targeting SHP-1, 2 and SHIP Pathways: A Novel Strategy for Cancer Treatment?
    Dempke WCM; Uciechowski P; Fenchel K; Chevassut T
    Oncology; 2018; 95(5):257-269. PubMed ID: 29925063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SHP-1 in cell-cycle regulation.
    López-Ruiz P; Rodriguez-Ubreva J; Cariaga AE; Cortes MA; Colás B
    Anticancer Agents Med Chem; 2011 Jan; 11(1):89-98. PubMed ID: 21291405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dinuclear copper complexes of organic claw: potent inhibition of protein tyrosine phosphatases.
    Ma L; Lu L; Zhu M; Wang Q; Gao F; Yuan C; Wu Y; Xing S; Fu X; Mei Y; Gao X
    J Inorg Biochem; 2011 Sep; 105(9):1138-47. PubMed ID: 21708098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting protein tyrosine phosphatases for anticancer drug discovery.
    Scott LM; Lawrence HR; Sebti SM; Lawrence NJ; Wu J
    Curr Pharm Des; 2010 Jun; 16(16):1843-62. PubMed ID: 20337577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The phosphatidylinositol polyphosphate 5-phosphatase SHIP and the protein tyrosine phosphatase SHP-2 form a complex in hematopoietic cells which can be regulated by BCR/ABL and growth factors.
    Sattler M; Salgia R; Shrikhande G; Verma S; Choi JL; Rohrschneider LR; Griffin JD
    Oncogene; 1997 Nov; 15(19):2379-84. PubMed ID: 9393882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drugging the Undruggable: Therapeutic Potential of Targeting Protein Tyrosine Phosphatases.
    Zhang ZY
    Acc Chem Res; 2017 Jan; 50(1):122-129. PubMed ID: 27977138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alteration of SHP-1/p-STAT3 Signaling: A Potential Target for Anticancer Therapy.
    Huang TT; Su JC; Liu CY; Shiau CW; Chen KF
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28594363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The tyrosine phosphatase SHP-1 inhibits proliferation of activated hepatic stellate cells by impairing PDGF receptor signaling.
    Tibaldi E; Zonta F; Bordin L; Magrin E; Gringeri E; Cillo U; Idotta G; Pagano MA; Brunati AM
    Biochim Biophys Acta; 2014 Feb; 1843(2):288-98. PubMed ID: 24140598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tyrosine phosphatases such as SHP-2 act in a balance with Src-family kinases in stabilization of postsynaptic clusters of acetylcholine receptors.
    Camilleri AA; Willmann R; Sadasivam G; Lin S; Rüegg MA; Gesemann M; Fuhrer C
    BMC Neurosci; 2007 Jul; 8():46. PubMed ID: 17605785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Association of protein tyrosine phosphatases (PTPs)-1B with c-Met receptor and modulation of corneal epithelial wound healing.
    Kakazu A; Sharma G; Bazan HE
    Invest Ophthalmol Vis Sci; 2008 Jul; 49(7):2927-35. PubMed ID: 18579758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of peripheral and central immunity: Understanding the role of Src homology 2 domain-containing tyrosine phosphatases, SHP-1 & SHP-2.
    Garg M; Wahid M; Khan F
    Immunobiology; 2020 Jan; 225(1):151847. PubMed ID: 31561841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NSC-87877, inhibitor of SHP-1/2 PTPs, inhibits dual-specificity phosphatase 26 (DUSP26).
    Song M; Park JE; Park SG; Lee DH; Choi HK; Park BC; Ryu SE; Kim JH; Cho S
    Biochem Biophys Res Commun; 2009 Apr; 381(4):491-5. PubMed ID: 19233143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SHP-1 and SHP-2 in T cells: two phosphatases functioning at many levels.
    Lorenz U
    Immunol Rev; 2009 Mar; 228(1):342-59. PubMed ID: 19290938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fcgamma receptor-mediated inhibition of human B cell activation: the role of SHP-2 phosphatase.
    Koncz G; Pecht I; Gergely J; Sármay G
    Eur J Immunol; 1999 Jun; 29(6):1980-9. PubMed ID: 10382761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategy for Leukemia Treatment Targeting SHP-1,2 and SHIP.
    Hao F; Wang C; Sholy C; Cao M; Kang X
    Front Cell Dev Biol; 2021; 9():730400. PubMed ID: 34490276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potent inhibition of protein tyrosine phosphatases by copper complexes with multi-benzimidazole derivatives.
    Li Y; Lu L; Zhu M; Wang Q; Yuan C; Xing S; Fu X; Mei Y
    Biometals; 2011 Dec; 24(6):993-1004. PubMed ID: 21618062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibitor Binding Sites in the Protein Tyrosine Phosphatase SHP-2.
    Zhang H; Gao Z; Meng C; Li X; Shi D
    Mini Rev Med Chem; 2020; 20(11):1017-1030. PubMed ID: 32124695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting PTPs with small molecule inhibitors in cancer treatment.
    Jiang ZX; Zhang ZY
    Cancer Metastasis Rev; 2008 Jun; 27(2):263-72. PubMed ID: 18259840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of SOV-induced phosphatase inhibition and expression of protein tyrosine phosphatases in rat corneal endothelial cells.
    Chen WL; Harris DL; Joyce NC
    Exp Eye Res; 2005 Nov; 81(5):570-80. PubMed ID: 15950220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein-tyrosine phosphatases: structure, mechanism, and inhibitor discovery.
    Burke TR; Zhang ZY
    Biopolymers; 1998; 47(3):225-41. PubMed ID: 9817026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.