BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 29925063)

  • 21. Therapeutic Targeting of Oncogenic Tyrosine Phosphatases.
    Frankson R; Yu ZH; Bai Y; Li Q; Zhang RY; Zhang ZY
    Cancer Res; 2017 Nov; 77(21):5701-5705. PubMed ID: 28855209
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Redox-sensitive signaling by angiotensin II involves oxidative inactivation and blunted phosphorylation of protein tyrosine phosphatase SHP-2 in vascular smooth muscle cells from SHR.
    Tabet F; Schiffrin EL; Callera GE; He Y; Yao G; Ostman A; Kappert K; Tonks NK; Touyz RM
    Circ Res; 2008 Jul; 103(2):149-58. PubMed ID: 18566342
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeting the yin and the yang: combined inhibition of the tyrosine kinase c-Src and the tyrosine phosphatase SHP-2 disrupts pancreatic cancer signaling and biology in vitro and tumor formation in vivo.
    Gomes EG; Connelly SF; Summy JM
    Pancreas; 2013 Jul; 42(5):795-806. PubMed ID: 23271399
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein tyrosine phosphatases in cancer: friends and foes!
    Labbé DP; Hardy S; Tremblay ML
    Prog Mol Biol Transl Sci; 2012; 106():253-306. PubMed ID: 22340721
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of the inositol phosphatase SHIP in negative regulation of the immune system by the receptor Fc(gamma)RIIB.
    Ono M; Bolland S; Tempst P; Ravetch JV
    Nature; 1996 Sep; 383(6597):263-6. PubMed ID: 8805703
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Altered regulation of SHP-2 and PTP 1B tyrosine phosphatases in cystic kidneys from bcl-2 -/- mice.
    Sorenson CM; Sheibani N
    Am J Physiol Renal Physiol; 2002 Mar; 282(3):F442-50. PubMed ID: 11832424
    [TBL] [Abstract][Full Text] [Related]  

  • 27. B cell antigen receptor (BCR)-mediated formation of a SHP-2-pp120 complex and its inhibition by Fc gamma RIIB1-BCR coligation.
    Nakamura K; Cambier JC
    J Immunol; 1998 Jul; 161(2):684-91. PubMed ID: 9670943
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure, function, and pathogenesis of SHP2 in developmental disorders and tumorigenesis.
    Huang WQ; Lin Q; Zhuang X; Cai LL; Ruan RS; Lu ZX; Tzeng CM
    Curr Cancer Drug Targets; 2014; 14(6):567-88. PubMed ID: 25039348
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein tyrosine phosphatases as novel targets in breast cancer therapy.
    Nunes-Xavier CE; Martín-Pérez J; Elson A; Pulido R
    Biochim Biophys Acta; 2013 Dec; 1836(2):211-26. PubMed ID: 23756181
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SHP protein tyrosine phosphatase expression in rat uterine tissue.
    Phillippe M; Bradley DF; Engle D; Sweet L
    J Soc Gynecol Investig; 2006 Jul; 13(5):338-42. PubMed ID: 16814162
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein phosphatases and podocyte function.
    Geraldes P
    Curr Opin Nephrol Hypertens; 2018 Jan; 27(1):49-55. PubMed ID: 29068796
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein tyrosine phosphatase inhibitors: a patent review (2002 - 2011).
    Sobhia ME; Paul S; Shinde R; Potluri M; Gundam V; Kaur A; Haokip T
    Expert Opin Ther Pat; 2012 Feb; 22(2):125-53. PubMed ID: 22332719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interleukin 6 inhibits proliferation and, in cooperation with an epidermal growth factor receptor autocrine loop, increases migration of T47D breast cancer cells.
    Badache A; Hynes NE
    Cancer Res; 2001 Jan; 61(1):383-91. PubMed ID: 11196191
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An extract of Perilla stem inhibits Src homology phosphatase-1 (SHP)-1 and influences insulin signaling.
    Peng L; Lei Z; Xiao-na X; Deli W; Jing S; Yong-sen W; Zhi W; Shu X; Jun-feng M; Wan-nan L; Xue-qi F
    Pak J Pharm Sci; 2015 Mar; 28(2):421-4. PubMed ID: 25730798
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein Tyrosine Signaling and its Potential Therapeutic Implications in Carcinogenesis.
    Kim M; Baek M; Kim DJ
    Curr Pharm Des; 2017 Nov; 23(29):4226-4246. PubMed ID: 28625132
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of tyrosine phosphatase inhibitors in cancer treatment with emphasis on SH2 domain-containing tyrosine phosphatases (SHPs).
    Irandoust M; van den Berg TK; Kaspers GJ; Cloos J
    Anticancer Agents Med Chem; 2009 Feb; 9(2):212-20. PubMed ID: 19199865
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Decoding protein-protein interactions through combinatorial chemistry: sequence specificity of SHP-1, SHP-2, and SHIP SH2 domains.
    Sweeney MC; Wavreille AS; Park J; Butchar JP; Tridandapani S; Pei D
    Biochemistry; 2005 Nov; 44(45):14932-47. PubMed ID: 16274240
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of oncogenic protein tyrosine phosphatases in cancer.
    Hardy S; Julien SG; Tremblay ML
    Anticancer Agents Med Chem; 2012 Jan; 12(1):4-18. PubMed ID: 21707506
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Capillarisin inhibits constitutive and inducible STAT3 activation through induction of SHP-1 and SHP-2 tyrosine phosphatases.
    Lee JH; Chiang SY; Nam D; Chung WS; Lee J; Na YS; Sethi G; Ahn KS
    Cancer Lett; 2014 Apr; 345(1):140-8. PubMed ID: 24333736
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Drug discovery and protein tyrosine phosphatases.
    Blaskovich MA
    Curr Med Chem; 2009; 16(17):2095-176. PubMed ID: 19519384
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.