BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 29925267)

  • 21. Serine/threonine phosphatases: mechanism through structure.
    Shi Y
    Cell; 2009 Oct; 139(3):468-84. PubMed ID: 19879837
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Affinity-based profiling of endogenous phosphoprotein phosphatases by mass spectrometry.
    Brauer BL; Wiredu K; Mitchell S; Moorhead GB; Gerber SA; Kettenbach AN
    Nat Protoc; 2021 Oct; 16(10):4919-4943. PubMed ID: 34518704
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein serine/threonine phosphatases: life, death, and sleeping.
    Gallego M; Virshup DM
    Curr Opin Cell Biol; 2005 Apr; 17(2):197-202. PubMed ID: 15780597
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A common structural scaffold in CTD phosphatases that supports distinct catalytic mechanisms.
    Pons T; Paramonov I; Boullosa C; Ibáñez K; Rojas AM; Valencia A
    Proteins; 2014 Jan; 82(1):103-18. PubMed ID: 23900790
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carboxyl methylation regulates phosphoprotein phosphatase 2A by controlling the association of regulatory B subunits.
    Tolstykh T; Lee J; Vafai S; Stock JB
    EMBO J; 2000 Nov; 19(21):5682-91. PubMed ID: 11060019
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel protein serine/threonine phosphatases: variety is the spice of life.
    Cohen PT
    Trends Biochem Sci; 1997 Jul; 22(7):245-51. PubMed ID: 9255065
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strategies to make protein serine/threonine (PP1, calcineurin) and tyrosine phosphatases (PTP1B) druggable: achieving specificity by targeting substrate and regulatory protein interaction sites.
    Peti W; Page R
    Bioorg Med Chem; 2015 Jun; 23(12):2781-5. PubMed ID: 25771485
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An alternate conformation and a third metal in PstP/Ppp, the M. tuberculosis PP2C-Family Ser/Thr protein phosphatase.
    Pullen KE; Ng HL; Sung PY; Good MC; Smith SM; Alber T
    Structure; 2004 Nov; 12(11):1947-54. PubMed ID: 15530359
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determinants for substrate specificity of the bacterial PP2C protein phosphatase tPphA from Thermosynechococcus elongatus.
    Su J; Forchhammer K
    FEBS J; 2013 Jan; 280(2):694-707. PubMed ID: 22212593
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein phosphatases and their targets: Comprehending the interactions in plant signaling pathways.
    Saini LK; Bheri M; Pandey GK
    Adv Protein Chem Struct Biol; 2023; 134():307-370. PubMed ID: 36858740
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein phosphatases: structures and implications.
    Jia Z
    Biochem Cell Biol; 1997; 75(1):17-26. PubMed ID: 9192069
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular evolution of phosphoprotein phosphatases in Drosophila.
    Miskei M; Ádám C; Kovács L; Karányi Z; Dombrádi V
    PLoS One; 2011; 6(7):e22218. PubMed ID: 21789237
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The structure and regulation of protein phosphatases.
    Cohen P
    Annu Rev Biochem; 1989; 58():453-508. PubMed ID: 2549856
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The protein phosphatases of Synechocystis sp. strain PCC 6803: open reading frames sll1033 and sll1387 encode enzymes that exhibit both protein-serine and protein-tyrosine phosphatase activity in vitro.
    Li R; Potters MB; Shi L; Kennelly PJ
    J Bacteriol; 2005 Sep; 187(17):5877-84. PubMed ID: 16109928
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Active-site mutations impairing the catalytic function of the catalytic subunit of human protein phosphatase 2A permit baculovirus-mediated overexpression in insect cells.
    Myles T; Schmidt K; Evans DR; Cron P; Hemmings BA
    Biochem J; 2001 Jul; 357(Pt 1):225-32. PubMed ID: 11415453
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational study of the covalent bonding of microcystins to cysteine residues--a reaction involved in the inhibition of the PPP family of protein phosphatases.
    Pereira SR; Vasconcelos VM; Antunes A
    FEBS J; 2013 Jan; 280(2):674-80. PubMed ID: 22177231
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural basis of regulation and substrate specificity of protein kinase CK2 deduced from the modeling of protein-protein interactions.
    Rekha N; Srinivasan N
    BMC Struct Biol; 2003 May; 3():4. PubMed ID: 12740046
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bacterial-like PPP protein phosphatases: novel sequence alterations in pathogenic eukaryotes and peculiar features of bacterial sequence similarity.
    Kerk D; Uhrig RG; Moorhead GB
    Plant Signal Behav; 2013; 8(12):e27365. PubMed ID: 24675170
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein Ser/Thr phosphatases of parasitic protozoa.
    Kutuzov MA; Andreeva AV
    Mol Biochem Parasitol; 2008 Oct; 161(2):81-90. PubMed ID: 18619495
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The 3D structure of protein phosphatase 2A: new insights into a ubiquitous regulator of cell signaling.
    Mumby M
    ACS Chem Biol; 2007 Feb; 2(2):99-103. PubMed ID: 17313179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.