BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 29925370)

  • 1. Comparative analysis of single-stranded DNA donors to generate conditional null mouse alleles.
    Lanza DG; Gaspero A; Lorenzo I; Liao L; Zheng P; Wang Y; Deng Y; Cheng C; Zhang C; Seavitt JR; DeMayo FJ; Xu J; Dickinson ME; Beaudet AL; Heaney JD
    BMC Biol; 2018 Jun; 16(1):69. PubMed ID: 29925370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas9-Mediated Insertion of loxP Sites in the Mouse Dock7 Gene Provides an Effective Alternative to Use of Targeted Embryonic Stem Cells.
    Bishop KA; Harrington A; Kouranova E; Weinstein EJ; Rosen CJ; Cui X; Liaw L
    G3 (Bethesda); 2016 Jul; 6(7):2051-61. PubMed ID: 27175020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of long single-stranded DNA donors in genome editing: generation and validation of mouse mutants.
    Codner GF; Mianné J; Caulder A; Loeffler J; Fell R; King R; Allan AJ; Mackenzie M; Pike FJ; McCabe CV; Christou S; Joynson S; Hutchison M; Stewart ME; Kumar S; Simon MM; Agius L; Anstee QM; Volynski KE; Kullmann DM; Wells S; Teboul L
    BMC Biol; 2018 Jun; 16(1):70. PubMed ID: 29925374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of Mouse Model (KI and CKO) via Easi-CRISPR.
    Shola DTN; Yang C; Han C; Norinsky R; Peraza RD
    Methods Mol Biol; 2021; 2224():1-27. PubMed ID: 33606203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins.
    Quadros RM; Miura H; Harms DW; Akatsuka H; Sato T; Aida T; Redder R; Richardson GP; Inagaki Y; Sakai D; Buckley SM; Seshacharyulu P; Batra SK; Behlke MA; Zeiner SA; Jacobi AM; Izu Y; Thoreson WB; Urness LD; Mansour SL; Ohtsuka M; Gurumurthy CB
    Genome Biol; 2017 May; 18(1):92. PubMed ID: 28511701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of Conditional Knockout Mice by Sequential Insertion of Two loxP Sites In Cis Using CRISPR/Cas9 and Single-Stranded DNA Oligonucleotides.
    Liu Y; Du Y; Xie W; Zhang F; Forrest D; Liu C
    Methods Mol Biol; 2019; 1874():191-210. PubMed ID: 30353515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/Cas9-mediated precise genome modification by a long ssDNA template in zebrafish.
    Bai H; Liu L; An K; Lu X; Harrison M; Zhao Y; Yan R; Lu Z; Li S; Lin S; Liang F; Qin W
    BMC Genomics; 2020 Jan; 21(1):67. PubMed ID: 31964350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors.
    Miura H; Quadros RM; Gurumurthy CB; Ohtsuka M
    Nat Protoc; 2018 Jan; 13(1):195-215. PubMed ID: 29266098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient ssODN-Mediated Targeting by Avoiding Cellular Inhibitory RNAs through Precomplexed CRISPR-Cas9/sgRNA Ribonucleoprotein.
    Kagita A; Lung MSY; Xu H; Kita Y; Sasakawa N; Iguchi T; Ono M; Wang XH; Gee P; Hotta A
    Stem Cell Reports; 2021 Apr; 16(4):985-996. PubMed ID: 33711268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly reliable creation of floxed alleles by electroporating single-cell embryos.
    Sentmanat MF; White JM; Kouranova E; Cui X
    BMC Biol; 2022 Feb; 20(1):31. PubMed ID: 35115009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9-mediated homology-directed repair by ssODNs in zebrafish induces complex mutational patterns resulting from genomic integration of repair-template fragments.
    Boel A; De Saffel H; Steyaert W; Callewaert B; De Paepe A; Coucke PJ; Willaert A
    Dis Model Mech; 2018 Oct; 11(10):. PubMed ID: 30355591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-mediated knock-in in the mouse embryo using long single stranded DNA donors synthesised by biotinylated PCR.
    Bennett H; Aguilar-Martinez E; Adamson AD
    Methods; 2021 Jul; 191():3-14. PubMed ID: 33172594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insertional Mutagenesis by CRISPR/Cas9 Ribonucleoprotein Gene Editing in Cells Targeted for Point Mutation Repair Directed by Short Single-Stranded DNA Oligonucleotides.
    Rivera-Torres N; Banas K; Bialk P; Bloh KM; Kmiec EB
    PLoS One; 2017; 12(1):e0169350. PubMed ID: 28052104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9.
    Paquet D; Kwart D; Chen A; Sproul A; Jacob S; Teo S; Olsen KM; Gregg A; Noggle S; Tessier-Lavigne M
    Nature; 2016 May; 533(7601):125-9. PubMed ID: 27120160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation.
    Gurumurthy CB; O'Brien AR; Quadros RM; Adams J; Alcaide P; Ayabe S; Ballard J; Batra SK; Beauchamp MC; Becker KA; Bernas G; Brough D; Carrillo-Salinas F; Chan W; Chen H; Dawson R; DeMambro V; D'Hont J; Dibb KM; Eudy JD; Gan L; Gao J; Gonzales A; Guntur AR; Guo H; Harms DW; Harrington A; Hentges KE; Humphreys N; Imai S; Ishii H; Iwama M; Jonasch E; Karolak M; Keavney B; Khin NC; Konno M; Kotani Y; Kunihiro Y; Lakshmanan I; Larochelle C; Lawrence CB; Li L; Lindner V; Liu XD; Lopez-Castejon G; Loudon A; Lowe J; Jerome-Majewska LA; Matsusaka T; Miura H; Miyasaka Y; Morpurgo B; Motyl K; Nabeshima YI; Nakade K; Nakashiba T; Nakashima K; Obata Y; Ogiwara S; Ouellet M; Oxburgh L; Piltz S; Pinz I; Ponnusamy MP; Ray D; Redder RJ; Rosen CJ; Ross N; Ruhe MT; Ryzhova L; Salvador AM; Alam SS; Sedlacek R; Sharma K; Smith C; Staes K; Starrs L; Sugiyama F; Takahashi S; Tanaka T; Trafford AW; Uno Y; Vanhoutte L; Vanrockeghem F; Willis BJ; Wright CS; Yamauchi Y; Yi X; Yoshimi K; Zhang X; Zhang Y; Ohtsuka M; Das S; Garry DJ; Hochepied T; Thomas P; Parker-Thornburg J; Adamson AD; Yoshiki A; Schmouth JF; Golovko A; Thompson WR; Lloyd KCK; Wood JA; Cowan M; Mashimo T; Mizuno S; Zhu H; Kasparek P; Liaw L; Miano JM; Burgio G
    Genome Biol; 2019 Aug; 20(1):171. PubMed ID: 31446895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of conditional Acvrl1 knockout mice by CRISPR/Cas9-mediated gene targeting.
    Xu M; Xu H; Chen J; Chen C; Xu F; Qin Z
    Mol Cell Probes; 2018 Feb; 37():32-38. PubMed ID: 29129659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient gene targeting in mouse zygotes mediated by CRISPR/Cas9-protein.
    Jung CJ; Zhang J; Trenchard E; Lloyd KC; West DB; Rosen B; de Jong PJ
    Transgenic Res; 2017 Apr; 26(2):263-277. PubMed ID: 27905063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Generation of Conditional Alleles Using CRISPR/Cas9 in Mouse Zygotes.
    Pritchard CEJ; Kroese LJ; Huijbers IJ
    Methods Mol Biol; 2017; 1642():21-35. PubMed ID: 28815491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of gene-edited pigs harboring orthologous human mutations via double cutting by CRISPR/Cas9 with long single-stranded DNAs as homology-directed repair templates by zygote injection.
    Xie F; Zhou X; Lin T; Wang L; Liu C; Luo X; Luo L; Chen H; Guo K; Wei H; Wang Y
    Transgenic Res; 2020 Dec; 29(5-6):587-598. PubMed ID: 33170439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of Gene Editing Activity Directed by Single-Stranded Oligonucleotides and CRISPR/Cas9 Systems.
    Bialk P; Rivera-Torres N; Strouse B; Kmiec EB
    PLoS One; 2015; 10(6):e0129308. PubMed ID: 26053390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.