BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 29925586)

  • 1. MicroRNA166 Modulates Cadmium Tolerance and Accumulation in Rice.
    Ding Y; Gong S; Wang Y; Wang F; Bao H; Sun J; Cai C; Yi K; Chen Z; Zhu C
    Plant Physiol; 2018 Aug; 177(4):1691-1703. PubMed ID: 29925586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Knockdown of Rice MicroRNA166 Confers Drought Resistance by Causing Leaf Rolling and Altering Stem Xylem Development.
    Zhang J; Zhang H; Srivastava AK; Pan Y; Bai J; Fang J; Shi H; Zhu JK
    Plant Physiol; 2018 Mar; 176(3):2082-2094. PubMed ID: 29367235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroRNA268 Overexpression Affects Rice Seedling Growth under Cadmium Stress.
    Ding Y; Wang Y; Jiang Z; Wang F; Jiang Q; Sun J; Chen Z; Zhu C
    J Agric Food Chem; 2017 Jul; 65(29):5860-5867. PubMed ID: 28657742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silicon regulates the expression of vacuolar H
    Cao F; Dai H; Hao PF; Wu F
    Chemosphere; 2020 Feb; 240():124907. PubMed ID: 31550592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation.
    Das N; Bhattacharya S; Maiti MK
    Plant Physiol Biochem; 2016 Aug; 105():297-309. PubMed ID: 27214086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low cadmium (LCD), a novel gene related to cadmium tolerance and accumulation in rice.
    Shimo H; Ishimaru Y; An G; Yamakawa T; Nakanishi H; Nishizawa NK
    J Exp Bot; 2011 Nov; 62(15):5727-34. PubMed ID: 21908474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa).
    Ding Y; Chen Z; Zhu C
    J Exp Bot; 2011 Jun; 62(10):3563-73. PubMed ID: 21362738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilizing transcriptomics and proteomics to unravel key genes and proteins of Oryza sativa seedlings mediated by selenium in response to cadmium stress.
    Zhu S; Sun S; Zhao W; Yang X; Mao H; Sheng L; Chen Z
    BMC Plant Biol; 2024 May; 24(1):360. PubMed ID: 38698342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of miR528 in the Regulation of Arsenite Tolerance in Rice (Oryza sativa L.).
    Liu Q; Hu H; Zhu L; Li R; Feng Y; Zhang L; Yang Y; Liu X; Zhang H
    J Agric Food Chem; 2015 Oct; 63(40):8849-61. PubMed ID: 26403656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactive Effects of Salicylic Acid and Nitric Oxide in Enhancing Rice Tolerance to Cadmium Stress.
    Mostofa MG; Rahman MM; Ansary MMU; Fujita M; Tran LP
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31752185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular identification and analysis of Cd-responsive microRNAs in rice.
    Ding Y; Qu A; Gong S; Huang S; Lv B; Zhu C
    J Agric Food Chem; 2013 Nov; 61(47):11668-75. PubMed ID: 23909695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of alternatively spliced transcripts of rice phytochelatin synthase 2 gene OsPCS2 involved in mitigation of cadmium and arsenic stresses.
    Das N; Bhattacharya S; Bhattacharyya S; Maiti MK
    Plant Mol Biol; 2017 May; 94(1-2):167-183. PubMed ID: 28283922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. OsTCTP, encoding a translationally controlled tumor protein, plays an important role in mercury tolerance in rice.
    Wang ZQ; Li GZ; Gong QQ; Li GX; Zheng SJ
    BMC Plant Biol; 2015 May; 15():123. PubMed ID: 25990386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Gene Expression Rather than Natural Polymorphism in Coding Sequence of the OsbZIP23 Determines Drought Tolerance and Yield Improvement in Rice Genotypes.
    Dey A; Samanta MK; Gayen S; Sen SK; Maiti MK
    PLoS One; 2016; 11(3):e0150763. PubMed ID: 26959651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytochelatin Synthase has Contrasting Effects on Cadmium and Arsenic Accumulation in Rice Grains.
    Uraguchi S; Tanaka N; Hofmann C; Abiko K; Ohkama-Ohtsu N; Weber M; Kamiya T; Sone Y; Nakamura R; Takanezawa Y; Kiyono M; Fujiwara T; Clemens S
    Plant Cell Physiol; 2017 Oct; 58(10):1730-1742. PubMed ID: 29016913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Foliar application of aspartic acid lowers cadmium uptake and Cd-induced oxidative stress in rice under Cd stress.
    Rizwan M; Ali S; Zaheer Akbar M; Shakoor MB; Mahmood A; Ishaque W; Hussain A
    Environ Sci Pollut Res Int; 2017 Sep; 24(27):21938-21947. PubMed ID: 28780693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of three cadmium-inducible promoters from Oryza sativa.
    Qiu CH; Li H; Li J; Qin RY; Xu RF; Yang YC; Ma H; Song FS; Li L; Wei PC; Yang JB
    J Biotechnol; 2015 Dec; 216():11-9. PubMed ID: 26435218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Root iron plaque alleviates cadmium toxicity to rice (Oryza sativa) seedlings.
    Fu Y; Yang X; Shen H
    Ecotoxicol Environ Saf; 2018 Oct; 161():534-541. PubMed ID: 29929129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental role and auxin responsiveness of Class III homeodomain leucine zipper gene family members in rice.
    Itoh J; Hibara K; Sato Y; Nagato Y
    Plant Physiol; 2008 Aug; 147(4):1960-75. PubMed ID: 18567825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice.
    Sasaki A; Yamaji N; Ma JF
    J Exp Bot; 2014 Nov; 65(20):6013-21. PubMed ID: 25151617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.