These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 29925601)

  • 1. Cellulose crystals plastify by localized shear.
    Molnár G; Rodney D; Martoïa F; Dumont PJJ; Nishiyama Y; Mazeau K; Orgéas L
    Proc Natl Acad Sci U S A; 2018 Jul; 115(28):7260-7265. PubMed ID: 29925601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear, non-linear and plastic bending deformation of cellulose nanocrystals.
    Chen P; Ogawa Y; Nishiyama Y; Ismail AE; Mazeau K
    Phys Chem Chem Phys; 2016 Jul; 18(29):19880-7. PubMed ID: 27388579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular deformation mechanisms of the wood cell wall material.
    Jin K; Qin Z; Buehler MJ
    J Mech Behav Biomed Mater; 2015 Feb; 42():198-206. PubMed ID: 25498207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shear-induced unidirectional deposition of bacterial cellulose microfibrils using rising bubble stream cultivation.
    Chae I; Bokhari SMQ; Chen X; Zu R; Liu K; Borhan A; Gopalan V; Catchmark JM; Kim SH
    Carbohydr Polym; 2021 Mar; 255():117328. PubMed ID: 33436171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The shear band controlled deformation in metallic glass: a perspective from fracture.
    Yang GN; Shao Y; Yao KF
    Sci Rep; 2016 Feb; 6():21852. PubMed ID: 26899145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional imaging of shear bands in bulk metallic glass composites.
    Hunter AH; Araullo-Peters V; Gibbons M; Restrepo OD; Niezgoda SR; Windl W; Flores KM; Hofmann DC; Marquis EA
    J Microsc; 2016 Dec; 264(3):304-310. PubMed ID: 27513447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defects and plasticity in ultrastrong supercrystalline nanocomposites.
    Giuntini D; Zhao S; Krekeler T; Li M; Blankenburg M; Bor B; Schaan G; Domènech B; Müller M; Scheider I; Ritter M; Schneider GA
    Sci Adv; 2021 Jan; 7(2):. PubMed ID: 33523985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleation of amorphous shear bands at nanotwins in boron suboxide.
    An Q; Reddy KM; Qian J; Hemker KJ; Chen MW; Goddard WA
    Nat Commun; 2016 Mar; 7():11001. PubMed ID: 27001922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation.
    He J; Kaban I; Mattern N; Song K; Sun B; Zhao J; Kim do H; Eckert J; Greer AL
    Sci Rep; 2016 May; 6():25832. PubMed ID: 27181922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of composition and pressure on the shear strength of sodium silicate glasses: An atomic scale simulation study.
    Molnár G; Ganster P; Tanguy A
    Phys Rev E; 2017 Apr; 95(4-1):043001. PubMed ID: 28505810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure⁻Property Relationships in Shape Memory Metallic Glass Composites.
    Şopu D; Yuan X; Moitzi F; Stoica M; Eckert J
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31052384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dilatancy induced ductile-brittle transition of shear band in metallic glasses.
    Zeng F; Jiang MQ; Dai LH
    Proc Math Phys Eng Sci; 2018 Apr; 474(2212):20170836. PubMed ID: 29740259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Granular crystals as strong and fully dense architectured materials.
    Karuriya AN; Barthelat F
    Proc Natl Acad Sci U S A; 2023 Jan; 120(1):e2215508120. PubMed ID: 36574692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deformation behavior of metallic glasses with shear band like atomic structure: a molecular dynamics study.
    Zhong C; Zhang H; Cao QP; Wang XD; Zhang DX; Ramamurty U; Jiang JZ
    Sci Rep; 2016 Aug; 6():30935. PubMed ID: 27480496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reducing deformation anisotropy to achieve ultrahigh strength and ductility in Mg at the nanoscale.
    Yu Q; Qi L; Mishra RK; Li J; Minor AM
    Proc Natl Acad Sci U S A; 2013 Aug; 110(33):13289-93. PubMed ID: 23904487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the yielding of a point-defect-rich model crystal under shear: insights from molecular dynamics simulations.
    Shrivastav GP; Kahl G
    Soft Matter; 2021 Sep; 17(37):8536-8552. PubMed ID: 34505613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling polymer interactions of the 'molecular Velcro' type in wood under mechanical stress.
    Altaner CM; Jarvis MC
    J Theor Biol; 2008 Aug; 253(3):434-45. PubMed ID: 18485371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deformation-Induced Crystal Growth or Redissolution, and Crystal-Induced Strengthening or Ductilization in Metallic Glasses Containing Nanocrystals.
    Thaiyanurak T; Soonthornkit S; Gordon O; Feng Z; Xu D
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical properties of ceria nanorods and nanochains; the effect of dislocations, grain-boundaries and oriented attachment.
    Sayle TX; Inkson BJ; Karakoti A; Kumar A; Molinari M; Möbus G; Parker SC; Seal S; Sayle DC
    Nanoscale; 2011 Apr; 3(4):1823-37. PubMed ID: 21409243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-wall recovery after irreversible deformation of wood.
    Keckes J; Burgert I; Frühmann K; Müller M; Kölln K; Hamilton M; Burghammer M; Roth SV; Stanzl-Tschegg S; Fratzl P
    Nat Mater; 2003 Dec; 2(12):810-4. PubMed ID: 14625541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.