These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Shear-induced unidirectional deposition of bacterial cellulose microfibrils using rising bubble stream cultivation. Chae I; Bokhari SMQ; Chen X; Zu R; Liu K; Borhan A; Gopalan V; Catchmark JM; Kim SH Carbohydr Polym; 2021 Mar; 255():117328. PubMed ID: 33436171 [TBL] [Abstract][Full Text] [Related]
5. The shear band controlled deformation in metallic glass: a perspective from fracture. Yang GN; Shao Y; Yao KF Sci Rep; 2016 Feb; 6():21852. PubMed ID: 26899145 [TBL] [Abstract][Full Text] [Related]
7. Defects and plasticity in ultrastrong supercrystalline nanocomposites. Giuntini D; Zhao S; Krekeler T; Li M; Blankenburg M; Bor B; Schaan G; Domènech B; Müller M; Scheider I; Ritter M; Schneider GA Sci Adv; 2021 Jan; 7(2):. PubMed ID: 33523985 [TBL] [Abstract][Full Text] [Related]
8. Nucleation of amorphous shear bands at nanotwins in boron suboxide. An Q; Reddy KM; Qian J; Hemker KJ; Chen MW; Goddard WA Nat Commun; 2016 Mar; 7():11001. PubMed ID: 27001922 [TBL] [Abstract][Full Text] [Related]
9. Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation. He J; Kaban I; Mattern N; Song K; Sun B; Zhao J; Kim do H; Eckert J; Greer AL Sci Rep; 2016 May; 6():25832. PubMed ID: 27181922 [TBL] [Abstract][Full Text] [Related]
10. Effect of composition and pressure on the shear strength of sodium silicate glasses: An atomic scale simulation study. Molnár G; Ganster P; Tanguy A Phys Rev E; 2017 Apr; 95(4-1):043001. PubMed ID: 28505810 [TBL] [Abstract][Full Text] [Related]
12. Dilatancy induced ductile-brittle transition of shear band in metallic glasses. Zeng F; Jiang MQ; Dai LH Proc Math Phys Eng Sci; 2018 Apr; 474(2212):20170836. PubMed ID: 29740259 [TBL] [Abstract][Full Text] [Related]
13. Granular crystals as strong and fully dense architectured materials. Karuriya AN; Barthelat F Proc Natl Acad Sci U S A; 2023 Jan; 120(1):e2215508120. PubMed ID: 36574692 [TBL] [Abstract][Full Text] [Related]
14. Deformation behavior of metallic glasses with shear band like atomic structure: a molecular dynamics study. Zhong C; Zhang H; Cao QP; Wang XD; Zhang DX; Ramamurty U; Jiang JZ Sci Rep; 2016 Aug; 6():30935. PubMed ID: 27480496 [TBL] [Abstract][Full Text] [Related]
15. Reducing deformation anisotropy to achieve ultrahigh strength and ductility in Mg at the nanoscale. Yu Q; Qi L; Mishra RK; Li J; Minor AM Proc Natl Acad Sci U S A; 2013 Aug; 110(33):13289-93. PubMed ID: 23904487 [TBL] [Abstract][Full Text] [Related]
16. On the yielding of a point-defect-rich model crystal under shear: insights from molecular dynamics simulations. Shrivastav GP; Kahl G Soft Matter; 2021 Sep; 17(37):8536-8552. PubMed ID: 34505613 [TBL] [Abstract][Full Text] [Related]
17. Modelling polymer interactions of the 'molecular Velcro' type in wood under mechanical stress. Altaner CM; Jarvis MC J Theor Biol; 2008 Aug; 253(3):434-45. PubMed ID: 18485371 [TBL] [Abstract][Full Text] [Related]
18. Deformation-Induced Crystal Growth or Redissolution, and Crystal-Induced Strengthening or Ductilization in Metallic Glasses Containing Nanocrystals. Thaiyanurak T; Soonthornkit S; Gordon O; Feng Z; Xu D Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893831 [TBL] [Abstract][Full Text] [Related]
19. Mechanical properties of ceria nanorods and nanochains; the effect of dislocations, grain-boundaries and oriented attachment. Sayle TX; Inkson BJ; Karakoti A; Kumar A; Molinari M; Möbus G; Parker SC; Seal S; Sayle DC Nanoscale; 2011 Apr; 3(4):1823-37. PubMed ID: 21409243 [TBL] [Abstract][Full Text] [Related]
20. Cell-wall recovery after irreversible deformation of wood. Keckes J; Burgert I; Frühmann K; Müller M; Kölln K; Hamilton M; Burghammer M; Roth SV; Stanzl-Tschegg S; Fratzl P Nat Mater; 2003 Dec; 2(12):810-4. PubMed ID: 14625541 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]