BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 2992572)

  • 1. Rate of transmembrane electron transfer in chromaffin-vesicle ghosts.
    Harnadek GJ; Ries EA; Njus D
    Biochemistry; 1985 May; 24(11):2640-4. PubMed ID: 2992572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron transfer across the chromaffin granule membrane.
    Njus D; Knoth J; Cook C; Kelly PM
    J Biol Chem; 1983 Jan; 258(1):27-30. PubMed ID: 6294100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A kinetic analysis of electron transport across chromaffin vesicle membranes.
    Kelley PM; Njus D
    J Biol Chem; 1988 Mar; 263(8):3799-804. PubMed ID: 3346224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An electron transfer dependent membrane potential in chromaffin-vesicle ghosts.
    Harnadek GJ; Callahan RE; Barone AR; Njus D
    Biochemistry; 1985 Jan; 24(2):384-9. PubMed ID: 2983756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron transfer in chromaffin-vesicle ghosts containing peroxidase.
    Harnadek GJ; Ries EA; Tse DG; Fitz JS; Njus D
    Biochim Biophys Acta; 1992 Jun; 1135(3):280-6. PubMed ID: 1623014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytochrome b561 catalyzes transmembrane electron transfer.
    Srivastava M; Duong LT; Fleming PJ
    J Biol Chem; 1984 Jul; 259(13):8072-5. PubMed ID: 6330096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stoichiometry of H+-linked dopamine transport in chromaffin granule ghosts.
    Knoth J; Zallakian M; Njus D
    Biochemistry; 1981 Nov; 20(23):6625-9. PubMed ID: 6458332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytochrome b561 spectral changes associated with electron transfer in chromaffin-vesicle ghosts.
    Kelley PM; Njus D
    J Biol Chem; 1986 May; 261(14):6429-32. PubMed ID: 3700398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purified cytochrome b561 catalyzes transmembrane electron transfer for dopamine beta-hydroxylase and peptidyl glycine alpha-amidating monooxygenase activities in reconstituted systems.
    Kent UM; Fleming PJ
    J Biol Chem; 1987 Jun; 262(17):8174-8. PubMed ID: 3597367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reserpic acid as an inhibitor of norepinephrine transport into chromaffin vesicle ghosts.
    Chaplin L; Cohen AH; Huettl P; Kennedy M; Njus D; Temperley SJ
    J Biol Chem; 1985 Sep; 260(20):10981-5. PubMed ID: 4030777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of dopamine beta-monooxygenase by external and internal electron donors in resealed chromaffin granule ghosts.
    Ahn NG; Klinman JP
    J Biol Chem; 1987 Feb; 262(4):1485-92. PubMed ID: 3805036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction of ascorbic acid with cytochrome b561. Concerted electron and proton transfer.
    Jalukar V; Kelley PM; Njus D
    J Biol Chem; 1991 Apr; 266(11):6878-82. PubMed ID: 1849895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for an ascorbate shuttle for the transfer of reducing equivalents across chromaffin granule membranes.
    Beers MF; Johnson RG; Scarpa A
    J Biol Chem; 1986 Feb; 261(6):2529-35. PubMed ID: 3949732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological amine transport in chromaffin ghosts. Coupling to the transmembrane proton and potential gradients.
    Johnson RG; Pfister D; Carty SE; Scarpa A
    J Biol Chem; 1979 Nov; 254(21):10963-72. PubMed ID: 40978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron transfer across posterior pituitary neurosecretory vesicle membranes.
    Russell JT; Levine M; Njus D
    J Biol Chem; 1985 Jan; 260(1):226-31. PubMed ID: 2981205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active and passive transport of dopamine in chromaffin granule ghosts isolated from bovine adrenal medulla.
    Ingebretsen OC; Flatmark T
    J Biol Chem; 1979 May; 254(10):3833-9. PubMed ID: 438162
    [No Abstract]   [Full Text] [Related]  

  • 17. Effects of dopamine beta-monooxygenase substrate analogs on ascorbate levels and norepinephrine synthesis in adrenal chromaffin granule ghosts.
    Wimalasena K; Herman HH; May SW
    J Biol Chem; 1989 Jan; 264(1):124-30. PubMed ID: 2909510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uptake of magnesium by chromaffin granules in vitro: role of the proton electrochemical gradient.
    Fiedler J; Daniels AJ
    J Neurochem; 1984 May; 42(5):1291-7. PubMed ID: 6707633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence that the H+ electrochemical gradient across membranes of chromaffin granules is not involved in exocytosis.
    Holz RW; Senter RA; Sharp RR
    J Biol Chem; 1983 Jun; 258(12):7506-13. PubMed ID: 6863252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of antimycin with cytochrome b-561. A study in secretory granules and in plasma membrane isolated from chromaffin cells of bovine adrenal medulla.
    Malviya AN; Rendon A; Aunis D
    FEBS Lett; 1983 Aug; 160(1-2):153-8. PubMed ID: 6884505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.