BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 2992577)

  • 1. Role of peptide structure in lipid-peptide interactions: high-sensitivity differential scanning calorimetry and electron spin resonance studies of the structural properties of dimyristoylphosphatidylcholine membranes interacting with pentagastrin-related pentapeptides.
    Surewicz WK; Epand RM
    Biochemistry; 1985 Jun; 24(13):3135-44. PubMed ID: 2992577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of peptide structure in lipid-peptide interactions: a fluorescence study of the binding of pentagastrin-related pentapeptides to phospholipid vesicles.
    Surewicz WK; Epand RM
    Biochemistry; 1984 Dec; 23(25):6072-7. PubMed ID: 6525344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phospholipid structure determines the effects of peptides on membranes. Differential scanning calorimetry studies with pentagastrin-related peptides.
    Surewicz WK; Epand RM
    Biochim Biophys Acta; 1986 Apr; 856(2):290-300. PubMed ID: 3955044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of various peptides on the thermotropic properties of phosphatidylcholine bilayers.
    Epand RM; Sturtevant JM
    Biophys Chem; 1984 Jun; 19(4):355-62. PubMed ID: 6547624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of staphylococcal delta-lysin on the thermotropic phase behavior and vesicle morphology of dimyristoylphosphatidylcholine lipid bilayer model membranes. Differential scanning calorimetric, 31P nuclear magnetic resonance and Fourier transform infrared spectroscopic, and X-ray diffraction studies.
    Lohner K; Staudegger E; Prenner EJ; Lewis RN; Kriechbaum M; Degovics G; McElhaney RN
    Biochemistry; 1999 Dec; 38(50):16514-28. PubMed ID: 10600113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of bee venom melittin with zwitterionic and negatively charged phospholipid bilayers: a spin-label electron spin resonance study.
    Kleinschmidt JH; Mahaney JE; Thomas DD; Marsh D
    Biophys J; 1997 Feb; 72(2 Pt 1):767-78. PubMed ID: 9017202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of peptide structure in lipid-peptide interactions: nuclear magnetic resonance study of the interaction of pentagastrin and [Arg4]pentagastrin with dimyristoylphosphatidylcholine.
    Epand RM; Surewicz WK; Yeagle P
    Chem Phys Lipids; 1988 Nov; 49(1-2):105-10. PubMed ID: 3233705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential scanning calorimetric study of the effect of the antimicrobial peptide gramicidin S on the thermotropic phase behavior of phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol lipid bilayer membranes.
    Prenner EJ; Lewis RN; Kondejewski LH; Hodges RS; McElhaney RN
    Biochim Biophys Acta; 1999 Mar; 1417(2):211-23. PubMed ID: 10082797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman spectroscopy of the thermal properties of reassembled high-density lipoprotein: apolipoprotein A-I complexes of dimyristoylphosphatidylcholine.
    Gilman T; Kauffman JW; Pownall HJ
    Biochemistry; 1981 Feb; 20(3):656-61. PubMed ID: 6783071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane interaction and perturbation mechanisms induced by two cationic cell penetrating peptides with distinct charge distribution.
    Alves ID; Goasdoué N; Correia I; Aubry S; Galanth C; Sagan S; Lavielle S; Chassaing G
    Biochim Biophys Acta; 2008; 1780(7-8):948-59. PubMed ID: 18498774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of the Australian tree frog antimicrobial peptides aurein 1.2, citropin 1.1 and maculatin 1.1 with lipid model membranes: differential scanning calorimetric and Fourier transform infrared spectroscopic studies.
    Seto GW; Marwaha S; Kobewka DM; Lewis RN; Separovic F; McElhaney RN
    Biochim Biophys Acta; 2007 Nov; 1768(11):2787-800. PubMed ID: 17825246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of the interaction of glucagon, human parathyroid hormone-(1-34)-peptide and calcitonin with dimyristoylphosphatidylglycerol and with dimyristoylphosphatidylcholine.
    Epand RM; Epand RF; Orlowski RC; Flanigan E; Stahl GL
    Biophys Chem; 1985 Nov; 23(1-2):39-48. PubMed ID: 4092081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential scanning calorimetry study on the binding of nucleic acids to dimyristoylphosphatidylcholine-sphingosine liposomes.
    Kõiv A; Mustonen P; Kinnunen PK
    Chem Phys Lipids; 1994 Mar; 70(1):1-10. PubMed ID: 7516824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mixtures of a series of homologous hydrophobic peptides with lipid bilayers: a simple model system for examining the protein-lipid interface.
    Jacobs RE; White SH
    Biochemistry; 1986 May; 25(9):2605-12. PubMed ID: 3718968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apolipophorin III interaction with model membranes composed of phosphatidylcholine and sphingomyelin using differential scanning calorimetry.
    Chiu MH; Wan CP; Weers PM; Prenner EJ
    Biochim Biophys Acta; 2009 Oct; 1788(10):2160-8. PubMed ID: 19647717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptides modeled on the transmembrane region of the slow voltage-gated IsK potassium channel: structural characterization of peptide assemblies in the beta-strand conformation.
    Aggeli A; Boden N; Cheng YL; Findlay JB; Knowles PF; Kovatchev P; Turnbull PJ
    Biochemistry; 1996 Dec; 35(50):16213-21. PubMed ID: 8973194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of tryptophan-rich cathelicidin antimicrobial peptides with model membranes studied by differential scanning calorimetry.
    Andrushchenko VV; Vogel HJ; Prenner EJ
    Biochim Biophys Acta; 2007 Oct; 1768(10):2447-58. PubMed ID: 17597579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minimal peptide length for interaction of amphipathic alpha-helical peptides with phosphatidylcholine liposomes.
    McLean LR; Hagaman KA; Owen TJ; Krstenansky JL
    Biochemistry; 1991 Jan; 30(1):31-7. PubMed ID: 1988028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction study between maltose-modified PPI dendrimers and lipidic model membranes.
    Wrobel D; Appelhans D; Signorelli M; Wiesner B; Fessas D; Scheler U; Voit B; Maly J
    Biochim Biophys Acta; 2015 Jul; 1848(7):1490-501. PubMed ID: 25843678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR, calorimetric, spin-label, and optical studies on a trifluoromethyl-substituted styryl molecular probe in dimyristoylphosphatidylcholine vesicles and multilamellar suspensions: a model for location of optical probes.
    Bammel BP; Hamilton DD; Haugland RP; Hopkins HP; Schuette J; Szalecki W; Smith JC
    Biochim Biophys Acta; 1990 May; 1024(1):61-81. PubMed ID: 2159805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.