These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 2992584)
1. Carboxyl group involvement in the meta I and meta II stages in rhodopsin bleaching. A Fourier transform infrared spectroscopic study. de Grip WJ; Gillespie J; Rothschild KJ Biochim Biophys Acta; 1985 Aug; 809(1):97-106. PubMed ID: 2992584 [TBL] [Abstract][Full Text] [Related]
2. Energetics of primary processes in visula escitation: photocalorimetry of rhodopsin in rod outer segment membranes. Cooper A; Converse CA Biochemistry; 1976 Jul; 15(14):2970-8. PubMed ID: 8077 [TBL] [Abstract][Full Text] [Related]
3. Fourier transform infrared spectroscopic investigation of rhodopsin structure and its comparison with bacteriorhodopsin. Haris PI; Coke M; Chapman D Biochim Biophys Acta; 1989 Apr; 995(2):160-7. PubMed ID: 2539198 [TBL] [Abstract][Full Text] [Related]
4. Fourier transform infrared study of photoreceptor membrane. I. Group assignments based on rhodopsin delipidation and reconstitution. Rothschild KJ; DeGrip WJ; Sanches R Biochim Biophys Acta; 1980 Mar; 596(3):338-51. PubMed ID: 7362819 [TBL] [Abstract][Full Text] [Related]
5. Hydrogen bonding changes of internal water molecules in rhodopsin during metarhodopsin I and metarhodopsin II formation. Rath P; Delange F; Degrip WJ; Rothschild KJ Biochem J; 1998 Feb; 329 ( Pt 3)(Pt 3):713-7. PubMed ID: 9445403 [TBL] [Abstract][Full Text] [Related]
6. Probing intramolecular orientations in rhodopsin and metarhodopsin II by polarized infrared difference spectroscopy. DeLange F; Bovee-Geurts PH; Pistorius AM; Rothschild KJ; DeGrip WJ Biochemistry; 1999 Oct; 38(40):13200-9. PubMed ID: 10529192 [TBL] [Abstract][Full Text] [Related]
7. Light-induced interaction between rhodopsin and the GTP-binding protein. Metarhodopsin II is the major photoproduct involved. Bennett N; Michel-Villaz M; Kühn H Eur J Biochem; 1982 Sep; 127(1):97-103. PubMed ID: 6291939 [TBL] [Abstract][Full Text] [Related]
8. Evidence for rhodopsin refolding during the decay of Meta II. Rothschild KJ; Gillespie J; DeGrip WJ Biophys J; 1987 Feb; 51(2):345-50. PubMed ID: 3828465 [TBL] [Abstract][Full Text] [Related]
9. Infrared spectroscopic study of photoreceptor membrane and purple membrane. Protein secondary structure and hydrogen deuterium exchange. Downer NW; Bruchman TJ; Hazzard JH J Biol Chem; 1986 Mar; 261(8):3640-7. PubMed ID: 3949781 [TBL] [Abstract][Full Text] [Related]
10. Rhodopsin-lumirhodopsin phototransition of bovine rhodopsin investigated by Fourier transform infrared difference spectroscopy. Ganter UM; Gärtner W; Siebert F Biochemistry; 1988 Sep; 27(19):7480-8. PubMed ID: 3207686 [TBL] [Abstract][Full Text] [Related]
11. Proton uptake by light induced interaction between rhodopsin and G-protein. Schleicher A; Hofmann KP Z Naturforsch C Biosci; 1985; 40(5-6):400-5. PubMed ID: 2992179 [TBL] [Abstract][Full Text] [Related]
12. Protonation states of membrane-embedded carboxylic acid groups in rhodopsin and metarhodopsin II: a Fourier-transform infrared spectroscopy study of site-directed mutants. Fahmy K; Jäger F; Beck M; Zvyaga TA; Sakmar TP; Siebert F Proc Natl Acad Sci U S A; 1993 Nov; 90(21):10206-10. PubMed ID: 7901852 [TBL] [Abstract][Full Text] [Related]
13. Lipid-protein interactions mediate the photochemical function of rhodopsin. Wiedmann TS; Pates RD; Beach JM; Salmon A; Brown MF Biochemistry; 1988 Aug; 27(17):6469-74. PubMed ID: 3219348 [TBL] [Abstract][Full Text] [Related]
14. Electrostatic properties of membrane lipids coupled to metarhodopsin II formation in visual transduction. Wang Y; Botelho AV; Martinez GV; Brown MF J Am Chem Soc; 2002 Jul; 124(26):7690-701. PubMed ID: 12083922 [TBL] [Abstract][Full Text] [Related]
15. [Molecular mechanisms of receptor. II. Identification of the conformational transition of rhodopsin responsible for the leading edge of the photoresponse of artificial lipid membranes modified by fragments of the outer segment of rods]. Fesenko EE; Orlov NIa; Ratner VL; Liubarskiĭ AL Mol Biol (Mosk); 1977; 11(4):741-7. PubMed ID: 618319 [TBL] [Abstract][Full Text] [Related]
16. [Molecular mechanisms of photoreception. IV. Photoregeneration of rhodopsin from metarhodopsin II using the artificial lipid membrane method for detection of intermediate steps of this reaction]. Orlov NIa; Fesenko EE Mol Biol (Mosk); 1981; 15(6):1276-85. PubMed ID: 7322116 [TBL] [Abstract][Full Text] [Related]
17. Water structural changes in lumirhodopsin, metarhodopsin I, and metarhodopsin II upon photolysis of bovine rhodopsin: analysis by Fourier transform infrared spectroscopy. Maeda A; Ohkita YJ; Sasaki J; Shichida Y; Yoshizawa T Biochemistry; 1993 Nov; 32(45):12033-8. PubMed ID: 8218280 [TBL] [Abstract][Full Text] [Related]
18. Fourier transform infrared difference spectroscopy of rhodopsin mutants: light activation of rhodopsin causes hydrogen-bonding change in residue aspartic acid-83 during meta II formation. Rath P; DeCaluwé LL; Bovee-Geurts PH; DeGrip WJ; Rothschild KJ Biochemistry; 1993 Oct; 32(39):10277-82. PubMed ID: 8399169 [TBL] [Abstract][Full Text] [Related]
19. Kinetics of rhodopsin photolysis intermediates in retinal rod disk membranes--I. Temperature dependence of lumirhodopsin and metarhodopsin I kinetics. Lewis JW; Winterle JS; Powers MA; Kliger DS; Dratz EA Photochem Photobiol; 1981 Sep; 34(3):375-84. PubMed ID: 7280053 [No Abstract] [Full Text] [Related]
20. Fourier-transform infrared spectroscopy applied to rhodopsin. The problem of the protonation state of the retinylidene Schiff base re-investigated. Siebert F; Mäntele W; Gerwert K Eur J Biochem; 1983 Oct; 136(1):119-27. PubMed ID: 6311543 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]