These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 29925876)
21. Phylogenetic determination of the pace of transposable element proliferation in plants: copia and LINE-like elements in Gossypium. Hawkins JS; Hu G; Rapp RA; Grafenberg JL; Wendel JF Genome; 2008 Jan; 51(1):11-8. PubMed ID: 18356935 [TBL] [Abstract][Full Text] [Related]
22. A computational genome-wide analysis of long terminal repeats retrotransposon expression in sunflower roots (Helianthus annuus L.). Mascagni F; Vangelisti A; Usai G; Giordani T; Cavallini A; Natali L Genetica; 2020 Feb; 148(1):13-23. PubMed ID: 31960179 [TBL] [Abstract][Full Text] [Related]
23. Genome-wide analysis of LTR-retrotransposon diversity and its impact on the evolution of the genus Helianthus (L.). Mascagni F; Giordani T; Ceccarelli M; Cavallini A; Natali L BMC Genomics; 2017 Aug; 18(1):634. PubMed ID: 28821238 [TBL] [Abstract][Full Text] [Related]
24. Natural selection on gene function drives the evolution of LTR retrotransposon families in the rice genome. Baucom RS; Estill JC; Leebens-Mack J; Bennetzen JL Genome Res; 2009 Feb; 19(2):243-54. PubMed ID: 19029538 [TBL] [Abstract][Full Text] [Related]
25. Distribution of Divo in Coffea genomes, a poorly described family of angiosperm LTR-Retrotransposons. Dupeyron M; de Souza RF; Hamon P; de Kochko A; Crouzillat D; Couturon E; Domingues DS; Guyot R Mol Genet Genomics; 2017 Aug; 292(4):741-754. PubMed ID: 28314936 [TBL] [Abstract][Full Text] [Related]
26. Rapid and Recent Evolution of LTR Retrotransposons Drives Rice Genome Evolution During the Speciation of AA-Genome Zhang QJ; Gao LZ G3 (Bethesda); 2017 Jun; 7(6):1875-1885. PubMed ID: 28413161 [TBL] [Abstract][Full Text] [Related]
27. Resolving fine-grained dynamics of retrotransposons: comparative analysis of inferential methods and genomic resources. Choudhury RR; Neuhaus JM; Parisod C Plant J; 2017 Jun; 90(5):979-993. PubMed ID: 28244250 [TBL] [Abstract][Full Text] [Related]
28. Transcriptional activation of long terminal repeat retrotransposon sequences in the genome of pitaya under abiotic stress. Nie Q; Qiao G; Peng L; Wen X Plant Physiol Biochem; 2019 Feb; 135():460-468. PubMed ID: 30497974 [TBL] [Abstract][Full Text] [Related]
29. Lizards and LINEs: selection and demography affect the fate of L1 retrotransposons in the genome of the green anole (Anolis carolinensis). Tollis M; Boissinot S Genome Biol Evol; 2013; 5(9):1754-68. PubMed ID: 24013105 [TBL] [Abstract][Full Text] [Related]
30. The dynamics of LTR retrotransposon accumulation across 25 million years of panicoid grass evolution. Estep MC; DeBarry JD; Bennetzen JL Heredity (Edinb); 2013 Feb; 110(2):194-204. PubMed ID: 23321774 [TBL] [Abstract][Full Text] [Related]
31. LTR-retrotransposon dynamics in common fig (Ficus carica L.) genome. Vangelisti A; Simoni S; Usai G; Ventimiglia M; Natali L; Cavallini A; Mascagni F; Giordani T BMC Plant Biol; 2021 May; 21(1):221. PubMed ID: 34000996 [TBL] [Abstract][Full Text] [Related]
32. Functional and structural divergence of an unusual LTR retrotransposon family in plants. Gao D; Jimenez-Lopez JC; Iwata A; Gill N; Jackson SA PLoS One; 2012; 7(10):e48595. PubMed ID: 23119066 [TBL] [Abstract][Full Text] [Related]
34. Analysis of plant LTR-retrotransposons at the fine-scale family level reveals individual molecular patterns. Domingues DS; Cruz GM; Metcalfe CJ; Nogueira FT; Vicentini R; Alves Cde S; Van Sluys MA BMC Genomics; 2012 Apr; 13():137. PubMed ID: 22507400 [TBL] [Abstract][Full Text] [Related]
35. Rapid proliferation and nucleolar organizer targeting centromeric retrotransposons in cotton. Han J; Masonbrink RE; Shan W; Song F; Zhang J; Yu W; Wang K; Wu Y; Tang H; Wendel JF; Wang K Plant J; 2016 Dec; 88(6):992-1005. PubMed ID: 27539015 [TBL] [Abstract][Full Text] [Related]
36. Genome-wide characterization of LTR retrotransposons in the non-model deep-sea annelid Lamellibrachia luymesi. Aroh O; Halanych KM BMC Genomics; 2021 Jun; 22(1):466. PubMed ID: 34157969 [TBL] [Abstract][Full Text] [Related]
37. Development of molecular markers based on LTR retrotransposon in the Cleistogenes songorica genome. Ma T; Wei X; Zhang Y; Li J; Wu F; Yan Q; Yan Z; Zhang Z; Kanzana G; Zhao Y; Yang Y; Zhang J J Appl Genet; 2022 Feb; 63(1):61-72. PubMed ID: 34554437 [TBL] [Abstract][Full Text] [Related]
38. Macromolecular organization and genetic mapping of a rapidly evolving chromosome-specific tandem repeat family (B77) in cotton (Gossypium). Zhao X; Ji Y; Ding X; Stelly DM; Paterson AH Plant Mol Biol; 1998 Dec; 38(6):1031-42. PubMed ID: 9869409 [TBL] [Abstract][Full Text] [Related]
39. Evolutionary course of CsRn1 long-terminal-repeat retrotransposon and its heterogeneous integrations into the genome of the liver fluke, Clonorchis sinensis. Bae YA; Kong Y Korean J Parasitol; 2003 Dec; 41(4):209-19. PubMed ID: 14699262 [TBL] [Abstract][Full Text] [Related]