These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 29925929)

  • 1. Reducing uncertainties in energy dissipation measurements in atomic force spectroscopy of molecular networks and cell-adhesion studies.
    Biswas S; Leitao S; Theillaud Q; Erickson BW; Fantner GE
    Sci Rep; 2018 Jun; 8(1):9390. PubMed ID: 29925929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studying integrin-mediated cell adhesion at the single-molecule level using AFM force spectroscopy.
    Franz CM; Taubenberger A; Puech PH; Muller DJ
    Sci STKE; 2007 Oct; 2007(406):pl5. PubMed ID: 17911652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing force spectroscopy by modifying commercial cantilevers: Improved stability, precision, and temporal resolution.
    Edwards DT; Perkins TT
    J Struct Biol; 2017 Jan; 197(1):13-25. PubMed ID: 26804584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing 1-μs-Resolution Single-Molecule Force Spectroscopy on a Commercial Atomic Force Microscope.
    Edwards DT; Faulk JK; Sanders AW; Bull MS; Walder R; LeBlanc MA; Sousa MC; Perkins TT
    Nano Lett; 2015 Oct; 15(10):7091-8. PubMed ID: 26421945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Minimizing pulling geometry errors in atomic force microscope single molecule force spectroscopy.
    Rivera M; Lee W; Ke C; Marszalek PE; Cole DG; Clark RL
    Biophys J; 2008 Oct; 95(8):3991-8. PubMed ID: 18641069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Going Vertical To Improve the Accuracy of Atomic Force Microscopy Based Single-Molecule Force Spectroscopy.
    Walder R; Van Patten WJ; Adhikari A; Perkins TT
    ACS Nano; 2018 Jan; 12(1):198-207. PubMed ID: 29244486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force Spectroscopy of Single Protein Molecules Using an Atomic Force Microscope.
    Scholl ZN; Li Q; Josephs E; Apostolidou D; Marszalek PE
    J Vis Exp; 2019 Feb; (144):. PubMed ID: 30882788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semi-automatized processing of AFM force-spectroscopy data.
    Gergely C; Senger B; Voegel JC; Hörber JK; Schaaf P; Hemmerlé J
    Ultramicroscopy; 2001 Mar; 87(1-2):67-78. PubMed ID: 11310543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AFM-Based Single-Molecule Force Spectroscopy of Proteins.
    Scholl ZN; Marszalek PE
    Methods Mol Biol; 2018; 1814():35-47. PubMed ID: 29956225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of hyperglycemia on adhesion between endothelial and cancer cells revealed by single-cell force spectroscopy.
    Malek-Zietek KE; Targosz-Korecka M; Szymonski M
    J Mol Recognit; 2017 Sep; 30(9):. PubMed ID: 28374551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy dissipation mapping of cancer cells.
    Dutta D; Palmer XL; Kim J; Qian S; Stacey M
    Micron; 2018 Feb; 105():24-29. PubMed ID: 29169143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Setting Up a Bio-AFM to Study Protein Misfolding in Neurodegenerative Diseases.
    Cheirdaris D; Krokidis MG; Kasti M; Vrahatis AG; Exarchos T; Vlamos P
    Adv Exp Med Biol; 2023; 1423():1-10. PubMed ID: 37525028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Details of Single-Molecule Force Spectroscopy Data Decoded by a Network-Based Automatic Clustering Algorithm.
    Cheng H; Yu J; Wang Z; Ma P; Guo C; Wang B; Zhong W; Xu B
    J Phys Chem B; 2021 Sep; 125(34):9660-9667. PubMed ID: 34425052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of Atomic Force Microscopy for Adhesion Force Measurements in Mechanotransduction.
    Trache A; Xie L; Huang H; Glinsky VV; Meininger GA
    Methods Mol Biol; 2018; 1814():515-528. PubMed ID: 29956252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New frontiers in atomic force microscopy: analyzing interactions from single-molecules to cells.
    Müller DJ; Krieg M; Alsteens D; Dufrêne YF
    Curr Opin Biotechnol; 2009 Feb; 20(1):4-13. PubMed ID: 19264474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Molecule Force Spectroscopy: Experiments, Analysis, and Simulations.
    Sumbul F; Rico F
    Methods Mol Biol; 2019; 1886():163-189. PubMed ID: 30374867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Living cell study at the single-molecule and single-cell levels by atomic force microscopy.
    Shi X; Zhang X; Xia T; Fang X
    Nanomedicine (Lond); 2012 Oct; 7(10):1625-37. PubMed ID: 23148543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving single molecule force spectroscopy through automated real-time data collection and quantification of experimental conditions.
    Scholl ZN; Marszalek PE
    Ultramicroscopy; 2014 Jan; 136():7-14. PubMed ID: 24001740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic force microscope-based single-molecule force spectroscopy of RNA unfolding.
    Heus HA; Puchner EM; van Vugt-Jonker AJ; Zimmermann JL; Gaub HE
    Anal Biochem; 2011 Jul; 414(1):1-6. PubMed ID: 21402049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Precision Single-Molecule Characterization of the Folding of an HIV RNA Hairpin by Atomic Force Microscopy.
    Walder R; Van Patten WJ; Ritchie DB; Montange RK; Miller TW; Woodside MT; Perkins TT
    Nano Lett; 2018 Oct; 18(10):6318-6325. PubMed ID: 30234311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.