BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 29926213)

  • 1. Size-dependent interaction of a 3-arm star poly(ethylene glycol) with two biological nanopores.
    Talarimoghari M; Baaken G; Hanselmann R; Behrends JC
    Eur Phys J E Soft Matter; 2018 Jun; 41(6):77. PubMed ID: 29926213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Resolution Size-Discrimination of Single Nonionic Synthetic Polymers with a Highly Charged Biological Nanopore.
    Baaken G; Halimeh I; Bacri L; Pelta J; Oukhaled A; Behrends JC
    ACS Nano; 2015 Jun; 9(6):6443-9. PubMed ID: 26028280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative biosensing of glycosaminoglycan hyaluronic acid oligo- and polysaccharides using aerolysin and [Formula: see text]-hemolysin nanopores
    Fennouri A; Ramiandrisoa J; Bacri L; Mathé J; Daniel R
    Eur Phys J E Soft Matter; 2018 Oct; 41(10):127. PubMed ID: 30338424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing driving forces in aerolysin and α-hemolysin biological nanopores: electrophoresis versus electroosmosis.
    Boukhet M; Piguet F; Ouldali H; Pastoriza-Gallego M; Pelta J; Oukhaled A
    Nanoscale; 2016 Nov; 8(43):18352-18359. PubMed ID: 27762420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Insights into Distinct Detection Properties of α-Hemolysin, MspA, CsgG, and Aerolysin Nanopore Sensors.
    Zhou W; Qiu H; Guo Y; Guo W
    J Phys Chem B; 2020 Mar; 124(9):1611-1618. PubMed ID: 32027510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polynucleotide transport through lipid membrane in the presence of starburst cyclodextrin-based poly(ethylene glycol)s.
    Eskandani Z; Le Gall T; Montier T; Lehn P; Montel F; Auvray L; Huin C; Guégan P
    Eur Phys J E Soft Matter; 2018 Nov; 41(11):132. PubMed ID: 30426391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of KCl enhancement in detection of nonionic polymers by nanopore sensors.
    Rodrigues CG; Machado DC; Chevtchenko SF; Krasilnikov OV
    Biophys J; 2008 Dec; 95(11):5186-92. PubMed ID: 18805926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single molecule compression reveals intra-protein forces drive cytotoxin pore formation.
    Czajkowsky DM; Sun J; Shao Z
    Elife; 2015 Dec; 4():e08421. PubMed ID: 26652734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partitioning of individual flexible polymers into a nanoscopic protein pore.
    Movileanu L; Cheley S; Bayley H
    Biophys J; 2003 Aug; 85(2):897-910. PubMed ID: 12885637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single polymer molecules in a protein nanopore in the limit of a strong polymer-pore attraction.
    Krasilnikov OV; Rodrigues CG; Bezrukov SM
    Phys Rev Lett; 2006 Jul; 97(1):018301. PubMed ID: 16907416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal unfolding of proteins probed at the single molecule level using nanopores.
    Payet L; Martinho M; Pastoriza-Gallego M; Betton JM; Auvray L; Pelta J; Mathé J
    Anal Chem; 2012 May; 84(9):4071-6. PubMed ID: 22486207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of ion channel current blockades caused by individual poly(ethylene glycol) molecules and polyoxometalate nanoclusters.
    Wang H; Kasianowicz JJ; Robertson JWF; Poster DL; Ettedgui J
    Eur Phys J E Soft Matter; 2019 Jun; 42(6):83. PubMed ID: 31250227
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Wilson JS; Churchill-Angus AM; Davies SP; Sedelnikova SE; Tzokov SB; Rafferty JB; Bullough PA; Bisson C; Baker PJ
    Nat Commun; 2019 Jul; 10(1):2900. PubMed ID: 31263098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Intermolecular π-Stacking Interaction Drives Conformational Changes Necessary to β-Barrel Formation in a Pore-Forming Toxin.
    Burns JR; Morton CJ; Parker MW; Tweten RK
    mBio; 2019 Jul; 10(4):. PubMed ID: 31266869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid assembly of a multimeric membrane protein pore.
    Thompson JR; Cronin B; Bayley H; Wallace MI
    Biophys J; 2011 Dec; 101(11):2679-83. PubMed ID: 22261056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Translocation of Precision Polymers through Biological Nanopores.
    Boukhet M; König NF; Ouahabi AA; Baaken G; Lutz JF; Behrends JC
    Macromol Rapid Commun; 2017 Dec; 38(24):. PubMed ID: 29144014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partitioning of a polymer into a nanoscopic protein pore obeys a simple scaling law.
    Movileanu L; Bayley H
    Proc Natl Acad Sci U S A; 2001 Aug; 98(18):10137-41. PubMed ID: 11504913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Structural Basis for a Transition State That Regulates Pore Formation in a Bacterial Toxin.
    Wade KR; Lawrence SL; Farrand AJ; Hotze EM; Kuiper MJ; Gorman MA; Christie MP; Panjikar S; Morton CJ; Parker MW; Tweten RK
    mBio; 2019 Apr; 10(2):. PubMed ID: 31015325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size-dependent forced PEG partitioning into channels: VDAC, OmpC, and α-hemolysin.
    Aksoyoglu MA; Podgornik R; Bezrukov SM; Gurnev PA; Muthukumar M; Parsegian VA
    Proc Natl Acad Sci U S A; 2016 Aug; 113(32):9003-8. PubMed ID: 27466408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-molecule sensing of peptides and nucleic acids by engineered aerolysin nanopores.
    Cao C; Cirauqui N; Marcaida MJ; Buglakova E; Duperrex A; Radenovic A; Dal Peraro M
    Nat Commun; 2019 Oct; 10(1):4918. PubMed ID: 31664022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.