BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 29926213)

  • 21. Single-molecule sensing of peptides and nucleic acids by engineered aerolysin nanopores.
    Cao C; Cirauqui N; Marcaida MJ; Buglakova E; Duperrex A; Radenovic A; Dal Peraro M
    Nat Commun; 2019 Oct; 10(1):4918. PubMed ID: 31664022
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aerolysin, a Powerful Protein Sensor for Fundamental Studies and Development of Upcoming Applications.
    Cressiot B; Ouldali H; Pastoriza-Gallego M; Bacri L; Van der Goot FG; Pelta J
    ACS Sens; 2019 Mar; 4(3):530-548. PubMed ID: 30747518
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore.
    Cao C; Ying YL; Hu ZL; Liao DF; Tian H; Long YT
    Nat Nanotechnol; 2016 Aug; 11(8):713-8. PubMed ID: 27111839
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simultaneous single-molecule discrimination of cysteine and homocysteine with a protein nanopore.
    Lu Y; Wu XY; Ying YL; Long YT
    Chem Commun (Camb); 2019 Aug; 55(63):9311-9314. PubMed ID: 31310244
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of single-molecule kinetics mediated by weak hydrogen bonds within a biological nanopore.
    Asandei A; Apetrei A; Park Y; Hahm KS; Luchian T
    Langmuir; 2011 Jan; 27(1):19-24. PubMed ID: 21128603
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanopore-Based Protein Identification.
    Afshar Bakshloo M; Kasianowicz JJ; Pastoriza-Gallego M; Mathé J; Daniel R; Piguet F; Oukhaled A
    J Am Chem Soc; 2022 Feb; 144(6):2716-2725. PubMed ID: 35120294
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Probing protein nanopores with poly(ethylene glycol)s.
    Liu W; Nestorovich EM
    Proteomics; 2022 Mar; 22(5-6):e2100055. PubMed ID: 35030301
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pore-forming toxins as tools for polymer analytics: From sizing to sequencing.
    Piguet F; Ensslen T; Bakshloo MA; Talarimoghari M; Ouldali H; Baaken G; Zaitseva E; Pastoriza-Gallego M; Behrends JC; Oukhaled A
    Methods Enzymol; 2021; 649():587-634. PubMed ID: 33712201
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The charge state of an ion channel controls neutral polymer entry into its pore.
    Bezrukov SM; Kasianowicz JJ
    Eur Biophys J; 1997; 26(6):471-6. PubMed ID: 9404007
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The analysis of single cysteine molecules with an aerolysin nanopore.
    Yuan B; Li S; Ying YL; Long YT
    Analyst; 2020 Feb; 145(4):1179-1183. PubMed ID: 31898708
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transport of long neutral polymers in the semidilute regime through a protein nanopore.
    Oukhaled AG; Biance AL; Pelta J; Auvray L; Bacri L
    Phys Rev Lett; 2012 Feb; 108(8):088104. PubMed ID: 22463579
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Binding of Cyt1Aa and Cry11Aa toxins of Bacillus thuringiensis serovar israelensis to brush border membrane vesicles of Tipula paludosa (Diptera: Nematocera) and subsequent pore formation.
    Oestergaard J; Ehlers RU; Martínez-Ramírez AC; Real MD
    Appl Environ Microbiol; 2007 Jun; 73(11):3623-9. PubMed ID: 17416690
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct Sensing of Single Native RNA with a Single-Biomolecule Interface of Aerolysin Nanopore.
    Yang J; Wang YQ; Li MY; Ying YL; Long YT
    Langmuir; 2018 Dec; 34(49):14940-14945. PubMed ID: 30462509
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aerolysin from Aeromonas hydrophila and related toxins.
    Fivaz M; Abrami L; Tsitrin Y; van der Goot FG
    Curr Top Microbiol Immunol; 2001; 257():35-52. PubMed ID: 11417121
    [No Abstract]   [Full Text] [Related]  

  • 35. Identification of Essential Sensitive Regions of the Aerolysin Nanopore for Single Oligonucleotide Analysis.
    Wang YQ; Li MY; Qiu H; Cao C; Wang MB; Wu XY; Huang J; Ying YL; Long YT
    Anal Chem; 2018 Jul; 90(13):7790-7794. PubMed ID: 29882404
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aerolysin--a paradigm for membrane insertion of beta-sheet protein toxins?
    Rossjohn J; Feil SC; McKinstry WJ; Tsernoglou D; van der Goot G; Buckley JT; Parker MW
    J Struct Biol; 1998; 121(2):92-100. PubMed ID: 9615432
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transport of alpha-helical peptides through alpha-hemolysin and aerolysin pores.
    Stefureac R; Long YT; Kraatz HB; Howard P; Lee JS
    Biochemistry; 2006 Aug; 45(30):9172-9. PubMed ID: 16866363
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single molecule atomic force microscopy of aerolysin pore complexes reveals unexpected star-shaped topography.
    He J; Wang J; Hu J; Sun J; Czajkowsky DM; Shao Z
    J Mol Recognit; 2016 Apr; 29(4):174-81. PubMed ID: 26537438
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polymeric nonelectrolytes to probe pore geometry: application to the alpha-toxin transmembrane channel.
    Merzlyak PG; Yuldasheva LN; Rodrigues CG; Carneiro CM; Krasilnikov OV; Bezrukov SM
    Biophys J; 1999 Dec; 77(6):3023-33. PubMed ID: 10585924
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Remote Activation of a Nanopore for High-Performance Genetic Detection Using a pH Taxis-Mimicking Mechanism.
    Wang Y; Tian K; Du X; Shi RC; Gu LQ
    Anal Chem; 2017 Dec; 89(24):13039-13043. PubMed ID: 29183111
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.