These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 29926276)
41. Mussel-inspired immobilization of vascular endothelial growth factor (VEGF) for enhanced endothelialization of vascular grafts. Shin YM; Lee YB; Kim SJ; Kang JK; Park JC; Jang W; Shin H Biomacromolecules; 2012 Jul; 13(7):2020-8. PubMed ID: 22617001 [TBL] [Abstract][Full Text] [Related]
42. Paclitaxel-eluting biodegradable synthetic vascular prostheses: a step towards reduction of neointima formation? Innocente F; Mandracchia D; Pektok E; Nottelet B; Tille JC; de Valence S; Faggian G; Mazzucco A; Kalangos A; Gurny R; Moeller M; Walpoth BH Circulation; 2009 Sep; 120(11 Suppl):S37-45. PubMed ID: 19752384 [TBL] [Abstract][Full Text] [Related]
43. A dynamically cultured collagen/cells-incorporated elastic scaffold for small-diameter vascular grafts. Park IS; Kim YH; Jung Y; Kim SH; Kim SH J Biomater Sci Polym Ed; 2012; 23(14):1807-20. PubMed ID: 21943800 [TBL] [Abstract][Full Text] [Related]
44. Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers: potential vascular graft for blood vessel tissue engineering. He W; Yong T; Teo WE; Ma Z; Ramakrishna S Tissue Eng; 2005; 11(9-10):1574-88. PubMed ID: 16259611 [TBL] [Abstract][Full Text] [Related]
45. Gravity spun polycaprolactone fibers for applications in vascular tissue engineering: proliferation and function of human vascular endothelial cells. Williamson MR; Woollard KJ; Griffiths HR; Coombes AG Tissue Eng; 2006 Jan; 12(1):45-51. PubMed ID: 16499441 [TBL] [Abstract][Full Text] [Related]
47. In vivo endothelization of tubular vascular grafts through in situ recruitment of endothelial and endothelial progenitor cells by RGD-fused mussel adhesive proteins. Kang TY; Lee JH; Kim BJ; Kang JA; Hong JM; Kim BS; Cha HJ; Rhie JW; Cho DW Biofabrication; 2015 Jan; 7(1):015007. PubMed ID: 25599716 [TBL] [Abstract][Full Text] [Related]
48. The phenotypic response of bovine corneal endothelial cells on chitosan/polycaprolactone blends. Wang TJ; Wang IJ; Chen S; Chen YH; Young TH Colloids Surf B Biointerfaces; 2012 Feb; 90():236-43. PubMed ID: 22078926 [TBL] [Abstract][Full Text] [Related]
49. Effect of sustained heparin release from PCL/chitosan hybrid small-diameter vascular grafts on anti-thrombogenic property and endothelialization. Yao Y; Wang J; Cui Y; Xu R; Wang Z; Zhang J; Wang K; Li Y; Zhao Q; Kong D Acta Biomater; 2014 Jun; 10(6):2739-49. PubMed ID: 24602806 [TBL] [Abstract][Full Text] [Related]
50. S-nitroso human serum albumin as a nitric oxide donor in drug-eluting vascular grafts: Biofunctionality and preclinical evaluation. Enayati M; Schneider KH; Almeria C; Grasl C; Kaun C; Messner B; Rohringer S; Walter I; Wojta J; Budinsky L; Walpoth BH; Schima H; Kager G; Hallström S; Podesser BK; Bergmeister H Acta Biomater; 2021 Oct; 134():276-288. PubMed ID: 34329787 [TBL] [Abstract][Full Text] [Related]
51. Alcohol pretreatment of small-diameter expanded polytetrafluoroethylene grafts: quantitative analysis of graft healing characteristics in the rat abdominal aorta interposition model. Pektok E; Cikirikcioglu M; Tille JC; Kalangos A; Walpoth BH Artif Organs; 2009 Jul; 33(7):532-7. PubMed ID: 19566729 [TBL] [Abstract][Full Text] [Related]
52. Ingrowth of aorta vascular cells into basic fibroblast growth factor-impregnated vascular prosthesis material: a porcine and human in vitro study on blood vessel prosthesis healing. van der Bas JM; Quax PH; van den Berg AC; van Hinsbergh VW; van Bockel JH J Vasc Surg; 2002 Dec; 36(6):1237-47. PubMed ID: 12469057 [TBL] [Abstract][Full Text] [Related]
53. Local Delivery of Dual MicroRNAs in Trilayered Electrospun Grafts for Vascular Regeneration. Wen M; Zhi D; Wang L; Cui C; Huang Z; Zhao Y; Wang K; Kong D; Yuan X ACS Appl Mater Interfaces; 2020 Feb; 12(6):6863-6875. PubMed ID: 31958006 [TBL] [Abstract][Full Text] [Related]
54. Successful endothelialization and remodeling of a cell-free small-diameter arterial graft in a large animal model. Koobatian MT; Row S; Smith RJ; Koenigsknecht C; Andreadis ST; Swartz DD Biomaterials; 2016 Jan; 76():344-58. PubMed ID: 26561932 [TBL] [Abstract][Full Text] [Related]
55. The performance of heparin modified poly(ε-caprolactone) small diameter tissue engineering vascular graft in canine-A long-term pilot experiment in vivo. Ye L; Takagi T; Tu C; Hagiwara A; Geng X; Feng Z J Biomed Mater Res A; 2021 Dec; 109(12):2493-2505. PubMed ID: 34096176 [TBL] [Abstract][Full Text] [Related]
56. Endothelial cells derived from circulating progenitors as an effective source to functional endothelialization of NaOH-treated poly(epsilon-caprolactone) films. Serrano MC; Pagani R; Ameer GA; Vallet-Regí M; Portolés MT J Biomed Mater Res A; 2008 Dec; 87(4):964-71. PubMed ID: 18257077 [TBL] [Abstract][Full Text] [Related]
57. Heparin-modified small-diameter nanofibrous vascular grafts. Janairo RR; Henry JJ; Lee BL; Hashi CK; Derugin N; Lee R; Li S IEEE Trans Nanobioscience; 2012 Mar; 11(1):22-7. PubMed ID: 22434651 [TBL] [Abstract][Full Text] [Related]
58. Insulin-like growth factor binding protein-7 (IGFBP7) blocks vascular endothelial cell growth factor (VEGF)-induced angiogenesis in human vascular endothelial cells. Tamura K; Hashimoto K; Suzuki K; Yoshie M; Kutsukake M; Sakurai T Eur J Pharmacol; 2009 May; 610(1-3):61-7. PubMed ID: 19374835 [TBL] [Abstract][Full Text] [Related]
59. VEGF-E enhances endothelialization and inhibits thrombus formation on polymeric surfaces. Knetsch ML; Koole LH J Biomed Mater Res A; 2010 Apr; 93(1):77-85. PubMed ID: 19484771 [TBL] [Abstract][Full Text] [Related]
60. Endothelialization of implanted cardiovascular biomaterial surfaces: the development from in vitro to in vivo. Liu T; Liu S; Zhang K; Chen J; Huang N J Biomed Mater Res A; 2014 Oct; 102(10):3754-72. PubMed ID: 24243819 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]