These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 29926443)

  • 1. The Synthesis of Designer DNA.
    Little RC; Whitfield CJ; Tuite EM; Pike AR
    Methods Mol Biol; 2018; 1811():11-21. PubMed ID: 29926443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic Method for the Synthesis of Long DNA Sequences with Multiple Repeat Units.
    Whitfield CJ; Turley AT; Tuite EM; Connolly BA; Pike AR
    Angew Chem Int Ed Engl; 2015 Jul; 54(31):8971-4. PubMed ID: 26095610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Priming Enzymatic Fabrication of Multiply Modified DNA.
    Whitfield CJ; Little RC; Khan K; Ijiro K; Connolly BA; Tuite EM; Pike AR
    Chemistry; 2018 Oct; 24(57):15267-15274. PubMed ID: 29931815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PCR-based accurate synthesis of long DNA sequences.
    Xiong AS; Yao QH; Peng RH; Duan H; Li X; Fan HQ; Cheng ZM; Li Y
    Nat Protoc; 2006; 1(2):791-7. PubMed ID: 17406309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of tandem repeats of DNA fragments by a polymerase chain reaction-based method.
    Chen JR; Deng ZN; Chen YB; Hu BW; Lü JJ; Long YL; Xiong XY
    DNA Cell Biol; 2012 Apr; 31(4):600-6. PubMed ID: 22176214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rapid and efficient PCR-based method for synthesizing high-molecular-weight multimers of oligonucleotides.
    Hemat F; McEntee K
    Biochem Biophys Res Commun; 1994 Nov; 205(1):475-81. PubMed ID: 7999067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A modified method for PCR-directed gene synthesis from large number of overlapping oligodeoxyribonucleotides.
    Cherry J; Nieuwenhuijsen BW; Kaftan EJ; Kennedy JD; Chanda PK
    J Biochem Biophys Methods; 2008 Apr; 70(6):820-2. PubMed ID: 18272229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the PCR protocol to amplify a repetitive DNA sequence.
    Riet J; Ramos LRV; Lewis RV; Marins LF
    Genet Mol Res; 2017 Sep; 16(3):. PubMed ID: 28973773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequences.
    Xiong AS; Yao QH; Peng RH; Li X; Fan HQ; Cheng ZM; Li Y
    Nucleic Acids Res; 2004 Jul; 32(12):e98. PubMed ID: 15240836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid-phase synthesis of oligo(2'-deoxyxylonucleotides) and PCR amplification of base-modified DNA fragments.
    Seela F; Rosemeyer H; Krecmerova M; Röling A
    Nucleic Acids Symp Ser; 1991; (24):87-90. PubMed ID: 1668697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SP-Designer: a user-friendly program for designing species-specific primer pairs from DNA sequence alignments.
    Villard P; Malausa T
    Mol Ecol Resour; 2013 Jul; 13(4):755-8. PubMed ID: 23634845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Isothermal unidirectional elongation method of gene synthesis].
    Lin JW; Zhang XD; Cao XY; Hu J; Ji CL
    Yi Chuan; 2007 Jun; 29(6):765-70. PubMed ID: 17650496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and polymerase chain reaction amplification of DNA strands containing an unnatural triazole linkage.
    El-Sagheer AH; Brown T
    J Am Chem Soc; 2009 Mar; 131(11):3958-64. PubMed ID: 19292490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid PCR amplification of DNA utilizing Coriolis effects.
    Mårtensson G; Skote M; Malmqvist M; Falk M; Asp A; Svanvik N; Johansson A
    Eur Biophys J; 2006 Aug; 35(6):453-8. PubMed ID: 16525773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simplified gene synthesis: a one-step approach to PCR-based gene construction.
    Wu G; Wolf JB; Ibrahim AF; Vadasz S; Gunasinghe M; Freeland SJ
    J Biotechnol; 2006 Jul; 124(3):496-503. PubMed ID: 16516321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of quantitative real-time PCR to estimate maize endogenous DNA degradation after cooking and extrusion or in food products.
    Murray SR; Butler RC; Hardacre AK; Timmerman-Vaughan GM
    J Agric Food Chem; 2007 Mar; 55(6):2231-9. PubMed ID: 17315886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basic quantitative polymerase chain reaction using real-time fluorescence measurements.
    Ares M
    Cold Spring Harb Protoc; 2014 Oct; 2014(10):pdb.prot080903. PubMed ID: 25275107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, synthesis, and amplification of DNA pools for in vitro selection.
    Pollard J; Bell SD; Ellington AD
    Curr Protoc Nucleic Acid Chem; 2001 May; Chapter 9():Unit 9.2. PubMed ID: 18428880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A direct and efficient synthesis method for dumbell-shaped linear DNA using PCR in vitro.
    Taki M; Kato Y; Miyagishi M; Takagi Y; Sano M; Taira K
    Nucleic Acids Res Suppl; 2003; (3):191-2. PubMed ID: 14510445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NanoPCR observation: different levels of DNA replication fidelity in nanoparticle-enhanced polymerase chain reactions.
    Shen C; Yang W; Ji Q; Maki H; Dong A; Zhang Z
    Nanotechnology; 2009 Nov; 20(45):455103. PubMed ID: 19822925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.