BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 29926447)

  • 1. Design and Characterization of pH-Triggered DNA Nanoswitches and Nanodevices Based on DNA Triplex Structures.
    Idili A; Ricci F
    Methods Mol Biol; 2018; 1811():79-100. PubMed ID: 29926447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programmable pH-triggered DNA nanoswitches.
    Idili A; Vallée-Bélisle A; Ricci F
    J Am Chem Soc; 2014 Apr; 136(16):5836-9. PubMed ID: 24716858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Nano-oddities": unusual nucleic acid assemblies for DNA-based nanostructures and nanodevices.
    Yatsunyk LA; Mendoza O; Mergny JL
    Acc Chem Res; 2014 Jun; 47(6):1836-44. PubMed ID: 24871086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applications of triplex DNA nanostructures in sensor development.
    Lin PY; Chi R; Wu YL; Ho JA
    Anal Bioanal Chem; 2022 Jul; 414(18):5217-5237. PubMed ID: 35469098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconfigurable DNA Nanoswitches for Graphical Readout of Molecular Signals.
    Chandrasekaran AR
    Chembiochem; 2018 May; 19(10):1018-1021. PubMed ID: 29573073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA logic assembly powered by a triplex-helix molecular switch for extracellular pH imaging.
    Qi H; Yue S; Bi S; Ding C; Song W
    Chem Commun (Camb); 2018 Jul; 54(61):8498-8501. PubMed ID: 30003199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of ultrasensitive DNA-based fluorescent pH sensitive nanodevices.
    Halder S; Krishnan Y
    Nanoscale; 2015 Jun; 7(22):10008-12. PubMed ID: 25990365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining the folding and binding free energy of DNA-based nanodevices and nanoswitches using urea titration curves.
    Idili A; Ricci F; Vallée-Bélisle A
    Nucleic Acids Res; 2017 Jul; 45(13):7571-7580. PubMed ID: 28605461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural DNA Nanotechnology: Artificial Nanostructures for Biomedical Research.
    Ke Y; Castro C; Choi JH
    Annu Rev Biomed Eng; 2018 Jun; 20():375-401. PubMed ID: 29618223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA-templated lithography and nanofabrication for the fabrication of nanoscale electronic circuitry.
    Gates EP; Dearden AM; Woolley AT
    Crit Rev Anal Chem; 2014; 44(4):354-70. PubMed ID: 25391721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleic acid based molecular devices.
    Krishnan Y; Simmel FC
    Angew Chem Int Ed Engl; 2011 Mar; 50(14):3124-56. PubMed ID: 21432950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA nanoarchitectures: steps towards biological applications.
    Tintoré M; Eritja R; Fábrega C
    Chembiochem; 2014 Jul; 15(10):1374-90. PubMed ID: 24953971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA nanodevices.
    Simmel FC; Dittmer WU
    Small; 2005 Mar; 1(3):284-99. PubMed ID: 17193445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triplex DNA Nanostructures: From Basic Properties to Applications.
    Hu Y; Cecconello A; Idili A; Ricci F; Willner I
    Angew Chem Int Ed Engl; 2017 Nov; 56(48):15210-15233. PubMed ID: 28444822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A duplex-triplex nucleic acid nanomachine that probes pH changes inside living cells during apoptosis.
    Li XM; Song J; Cheng T; Fu PY
    Anal Bioanal Chem; 2013 Jul; 405(18):5993-9. PubMed ID: 23695490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orthogonal Control of DNA Nanoswitches with Mixed Physical and Biochemical Cues.
    Forrest NT; Vilcapoma J; Alejos K; Halvorsen K; Chandrasekaran AR
    Biochemistry; 2021 Feb; 60(4):250-253. PubMed ID: 33464826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vitro Selection of pH-Activated DNA Nanostructures.
    Fong FY; Oh SS; Hawker CJ; Soh HT
    Angew Chem Int Ed Engl; 2016 Dec; 55(49):15258-15262. PubMed ID: 27809385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomedical Applications of DNA-Based Molecular Devices.
    Liu S; Jiang Q; Wang Y; Ding B
    Adv Healthc Mater; 2019 May; 8(10):e1801658. PubMed ID: 30938489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Sensing Enzyme-Powered Micromotors Equipped with pH-Responsive DNA Nanoswitches.
    Patino T; Porchetta A; Jannasch A; Lladó A; Stumpp T; Schäffer E; Ricci F; Sánchez S
    Nano Lett; 2019 Jun; 19(6):3440-3447. PubMed ID: 30704240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering a responsive DNA triple helix into an octahedral DNA nanostructure for a reversible opening/closing switching mechanism: a computational and experimental integrated study.
    Ottaviani A; Iacovelli F; Idili A; Falconi M; Ricci F; Desideri A
    Nucleic Acids Res; 2018 Nov; 46(19):9951-9959. PubMed ID: 30247614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.