These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Highly sensitive electrochemical biosensor based on nonlinear hybridization chain reaction for DNA detection. Jia L; Shi S; Ma R; Jia W; Wang H Biosens Bioelectron; 2016 Jun; 80():392-397. PubMed ID: 26872213 [TBL] [Abstract][Full Text] [Related]
3. Hybridization chain reaction performed on a metal surface as a means of signal amplification in SPR and electrochemical biosensors. Spiga FM; Bonyár A; Ring B; Onofri M; Vinelli A; Sántha H; Guiducci C; Zuccheri G Biosens Bioelectron; 2014 Apr; 54():102-8. PubMed ID: 24252766 [TBL] [Abstract][Full Text] [Related]
4. Nanopore biosensor for sensitive and label-free nucleic acid detection based on hybridization chain reaction amplification. Zhao T; Zhang HS; Tang H; Jiang JH Talanta; 2017 Dec; 175():121-126. PubMed ID: 28841968 [TBL] [Abstract][Full Text] [Related]
5. Chemical and Biological Sensing Using Hybridization Chain Reaction. Augspurger EE; Rana M; Yigit MV ACS Sens; 2018 May; 3(5):878-902. PubMed ID: 29733201 [TBL] [Abstract][Full Text] [Related]
6. Enzyme-free and ultrasensitive electrochemical detection of nucleic acids by target catalyzed hairpin assembly followed with hybridization chain reaction. Liu S; Wang Y; Ming J; Lin Y; Cheng C; Li F Biosens Bioelectron; 2013 Nov; 49():472-7. PubMed ID: 23811481 [TBL] [Abstract][Full Text] [Related]
7. Visual detection of nucleic acids based on lateral flow biosensor and hybridization chain reaction amplification. Ying N; Ju C; Li Z; Liu W; Wan J Talanta; 2017 Mar; 164():432-438. PubMed ID: 28107953 [TBL] [Abstract][Full Text] [Related]
8. A new photoelectrochemical biosensor for ultrasensitive determination of nucleic acids based on a three-stage cascade signal amplification strategy. Xiong E; Yan X; Zhang X; Li Y; Yang R; Meng L; Chen J Analyst; 2018 Jun; 143(12):2799-2806. PubMed ID: 29862398 [TBL] [Abstract][Full Text] [Related]
9. A cascade autocatalytic strand displacement amplification and hybridization chain reaction event for label-free and ultrasensitive electrochemical nucleic acid biosensing. Chen Z; Liu Y; Xin C; Zhao J; Liu S Biosens Bioelectron; 2018 Aug; 113():1-8. PubMed ID: 29709776 [TBL] [Abstract][Full Text] [Related]
10. Fluorescence detection for DNA using hybridization chain reaction with enzyme-amplification. Niu S; Jiang Y; Zhang S Chem Commun (Camb); 2010 May; 46(18):3089-91. PubMed ID: 20424746 [TBL] [Abstract][Full Text] [Related]
11. Hyperbranched Hybridization Chain Reaction for Triggered Signal Amplification and Concatenated Logic Circuits. Bi S; Chen M; Jia X; Dong Y; Wang Z Angew Chem Int Ed Engl; 2015 Jul; 54(28):8144-8. PubMed ID: 26012841 [TBL] [Abstract][Full Text] [Related]
12. In situ amplified electrochemical aptasensing for sensitive detection of adenosine triphosphate by coupling target-induced hybridization chain reaction with the assembly of silver nanotags. Zhou Q; Lin Y; Lin Y; Wei Q; Chen G; Tang D Talanta; 2016; 146():23-8. PubMed ID: 26695229 [TBL] [Abstract][Full Text] [Related]
13. Hybridization Chain Reaction-Based Electrochemical Biosensors by Integrating the Advantages of Homogeneous Reaction and Heterogeneous Detection. Xia N; Cheng J; Tian L; Zhang S; Wang Y; Li G Biosensors (Basel); 2023 May; 13(5):. PubMed ID: 37232904 [TBL] [Abstract][Full Text] [Related]
14. Universal Dynamic DNA Assembly-Programmed Surface Hybridization Effect for Single-Step, Reusable, and Amplified Electrochemical Nucleic Acid Biosensing. Liu S; Fang L; Wang Y; Wang L Anal Chem; 2017 Mar; 89(5):3108-3115. PubMed ID: 28194961 [TBL] [Abstract][Full Text] [Related]
15. Regulation of DNA self-assembly and DNA hybridization by chiral molecules with corresponding biosensor applications. Wei B; Liu N; Zhang J; Ou X; Duan R; Yang Z; Lou X; Xia F Anal Chem; 2015 Feb; 87(4):2058-62. PubMed ID: 25644995 [TBL] [Abstract][Full Text] [Related]
16. Enzyme-free and label-free ultrasensitive electrochemical detection of DNA and adenosine triphosphate by dendritic DNA concatamer-based signal amplification. Liu S; Lin Y; Liu T; Cheng C; Wei W; Wang L; Li F Biosens Bioelectron; 2014 Jun; 56():12-8. PubMed ID: 24445068 [TBL] [Abstract][Full Text] [Related]
17. Dynamic Modulation of DNA Hybridization Using Allosteric DNA Tetrahedral Nanostructures. Song P; Li M; Shen J; Pei H; Chao J; Su S; Aldalbahi A; Wang L; Shi J; Song S; Wang L; Fan C; Zuo X Anal Chem; 2016 Aug; 88(16):8043-9. PubMed ID: 27435955 [TBL] [Abstract][Full Text] [Related]
18. Enzymatic Biofuel-Cell-Based Self-Powered Biosensor Integrated with DNA Amplification Strategy for Ultrasensitive Detection of Single-Nucleotide Polymorphism. Gu C; Kong X; Liu X; Gai P; Li F Anal Chem; 2019 Jul; 91(13):8697-8704. PubMed ID: 31247724 [TBL] [Abstract][Full Text] [Related]
19. Hybridization chain reaction amplification of microRNA detection with a tetrahedral DNA nanostructure-based electrochemical biosensor. Ge Z; Lin M; Wang P; Pei H; Yan J; Shi J; Huang Q; He D; Fan C; Zuo X Anal Chem; 2014 Feb; 86(4):2124-30. PubMed ID: 24495151 [TBL] [Abstract][Full Text] [Related]
20. Recent Progress in DNA Hybridization Chain Reaction Strategies for Amplified Biosensing. Chai H; Cheng W; Jin D; Miao P ACS Appl Mater Interfaces; 2021 Aug; 13(33):38931-38946. PubMed ID: 34374513 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]