These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 29926462)

  • 1. Constructing Free Energy Landscapes of Nucleic Acid Hairpin Unfolding.
    McCauley MJ; Rouzina I; Williams MC
    Methods Mol Biol; 2018; 1811():315-332. PubMed ID: 29926462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted binding of nucleocapsid protein transforms the folding landscape of HIV-1 TAR RNA.
    McCauley MJ; Rouzina I; Manthei KA; Gorelick RJ; Musier-Forsyth K; Williams MC
    Proc Natl Acad Sci U S A; 2015 Nov; 112(44):13555-60. PubMed ID: 26483503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Precision Single-Molecule Characterization of the Folding of an HIV RNA Hairpin by Atomic Force Microscopy.
    Walder R; Van Patten WJ; Ritchie DB; Montange RK; Miller TW; Woodside MT; Perkins TT
    Nano Lett; 2018 Oct; 18(10):6318-6325. PubMed ID: 30234311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Significant Differences in RNA Structure Destabilization by HIV-1 GagDp6 and NCp7 Proteins.
    McCauley MJ; Rouzina I; Li J; Núñez ME; Williams MC
    Viruses; 2020 Apr; 12(5):. PubMed ID: 32344834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational dynamics of the frameshift stimulatory structure in HIV-1.
    Ritchie DB; Cappellano TR; Tittle C; Rezajooei N; Rouleau L; Sikkema WKA; Woodside MT
    RNA; 2017 Sep; 23(9):1376-1384. PubMed ID: 28522581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific Nucleic Acid Chaperone Activity of HIV-1 Nucleocapsid Protein Deduced from Hairpin Unfolding.
    McCauley MJ; Rouzina I; Williams MC
    Methods Mol Biol; 2020; 2106():59-88. PubMed ID: 31889251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D structure stability of the HIV-1 TAR RNA in ion solutions: A coarse-grained model study.
    Zhang BG; Qiu HH; Jiang J; Liu J; Shi YZ
    J Chem Phys; 2019 Oct; 151(16):165101. PubMed ID: 31675878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical unfolding of RNA: from hairpins to structures with internal multiloops.
    Hyeon C; Thirumalai D
    Biophys J; 2007 Feb; 92(3):731-43. PubMed ID: 17028142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the role of four small hairpins in the HIV-1 RNA genome.
    Knoepfel SA; Berkhout B
    RNA Biol; 2013 Apr; 10(4):540-52. PubMed ID: 23535706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the mechanical folding kinetics of TAR RNA by hopping, force-jump, and force-ramp methods.
    Li PT; Collin D; Smith SB; Bustamante C; Tinoco I
    Biophys J; 2006 Jan; 90(1):250-60. PubMed ID: 16214869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Equilibrium unfolding (folding) pathway of a model H-type pseudoknotted RNA: the role of magnesium ions in stability.
    Nixon PL; Giedroc DP
    Biochemistry; 1998 Nov; 37(46):16116-29. PubMed ID: 9819204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins.
    Woodside MT; Behnke-Parks WM; Larizadeh K; Travers K; Herschlag D; Block SM
    Proc Natl Acad Sci U S A; 2006 Apr; 103(16):6190-5. PubMed ID: 16606839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forced-unfolding and force-quench refolding of RNA hairpins.
    Hyeon C; Thirumalai D
    Biophys J; 2006 May; 90(10):3410-27. PubMed ID: 16473903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Molecule Mechanical Folding and Unfolding of RNA Hairpins: Effects of Single A-U to A·C Pair Substitutions and Single Proton Binding and Implications for mRNA Structure-Induced -1 Ribosomal Frameshifting.
    Yang L; Zhong Z; Tong C; Jia H; Liu Y; Chen G
    J Am Chem Soc; 2018 Jul; 140(26):8172-8184. PubMed ID: 29884019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstructing folding energy landscapes from splitting probability analysis of single-molecule trajectories.
    Manuel AP; Lambert J; Woodside MT
    Proc Natl Acad Sci U S A; 2015 Jun; 112(23):7183-8. PubMed ID: 26039984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights on the role of nucleic acid/protein interactions in chaperoned nucleic acid rearrangements of HIV-1 reverse transcription.
    Liu HW; Zeng Y; Landes CF; Kim YJ; Zhu Y; Ma X; Vo MN; Musier-Forsyth K; Barbara PF
    Proc Natl Acad Sci U S A; 2007 Mar; 104(13):5261-7. PubMed ID: 17372205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-molecule study of the inhibition of HIV-1 transactivation response region DNA/DNA annealing by argininamide.
    Landes CF; Zeng Y; Liu HW; Musier-Forsyth K; Barbara PF
    J Am Chem Soc; 2007 Aug; 129(33):10181-8. PubMed ID: 17658799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic ensemble view of the conformational landscape of HIV-1 TAR RNA and allosteric recognition.
    Lu J; Kadakkuzha BM; Zhao L; Fan M; Qi X; Xia T
    Biochemistry; 2011 Jun; 50(22):5042-57. PubMed ID: 21553929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Force-dependent fragility in RNA hairpins.
    Manosas M; Collin D; Ritort F
    Phys Rev Lett; 2006 Jun; 96(21):218301. PubMed ID: 16803276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies.
    Collin D; Ritort F; Jarzynski C; Smith SB; Tinoco I; Bustamante C
    Nature; 2005 Sep; 437(7056):231-4. PubMed ID: 16148928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.