These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 29927069)

  • 1. Using LICHeE and BAMSE for Reconstructing Cancer Phylogenetic Trees.
    Ricketts C; Popic V; Toosi H; Hajirasouliha I
    Curr Protoc Bioinformatics; 2018 Jun; 62(1):e49. PubMed ID: 29927069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast and scalable inference of multi-sample cancer lineages.
    Popic V; Salari R; Hajirasouliha I; Kashef-Haghighi D; West RB; Batzoglou S
    Genome Biol; 2015 May; 16(1):91. PubMed ID: 25944252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BAMSE: Bayesian model selection for tumor phylogeny inference among multiple samples.
    Toosi H; Moeini A; Hajirasouliha I
    BMC Bioinformatics; 2019 Jun; 20(Suppl 11):282. PubMed ID: 31167637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogenetic Copy-Number Factorization of Multiple Tumor Samples.
    Zaccaria S; El-Kebir M; Klau GW; Raphael BJ
    J Comput Biol; 2018 Jul; 25(7):689-708. PubMed ID: 29658782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogenetic Tree Inference: A Top-Down Approach to Track Tumor Evolution.
    Wu P; Hou L; Zhang Y; Zhang L
    Front Genet; 2019; 10():1371. PubMed ID: 32117420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CALDER: Inferring Phylogenetic Trees from Longitudinal Tumor Samples.
    Myers MA; Satas G; Raphael BJ
    Cell Syst; 2019 Jun; 8(6):514-522.e5. PubMed ID: 31229560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Power and pitfalls of computational methods for inferring clone phylogenies and mutation orders from bulk sequencing data.
    Miura S; Vu T; Deng J; Buturla T; Oladeinde O; Choi J; Kumar S
    Sci Rep; 2020 Feb; 10(1):3498. PubMed ID: 32103044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inferring clonal evolution of tumors from single nucleotide somatic mutations.
    Jiao W; Vembu S; Deshwar AG; Stein L; Morris Q
    BMC Bioinformatics; 2014 Feb; 15():35. PubMed ID: 24484323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CONIPHER: a computational framework for scalable phylogenetic reconstruction with error correction.
    Grigoriadis K; Huebner A; Bunkum A; Colliver E; Frankell AM; Hill MS; Thol K; Birkbak NJ; Swanton C; Zaccaria S; McGranahan N
    Nat Protoc; 2024 Jan; 19(1):159-183. PubMed ID: 38017136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches.
    Smith SA; Beaulieu JM; Donoghue MJ
    BMC Evol Biol; 2009 Feb; 9():37. PubMed ID: 19210768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clonality Inference from Single Tumor Samples Using Low-Coverage Sequence Data.
    Donmez N; Malikic S; Wyatt AW; Gleave ME; Collins CC; Sahinalp SC
    J Comput Biol; 2017 Jun; 24(6):515-523. PubMed ID: 28056180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ascatNgs: Identifying Somatically Acquired Copy-Number Alterations from Whole-Genome Sequencing Data.
    Raine KM; Van Loo P; Wedge DC; Jones D; Menzies A; Butler AP; Teague JW; Tarpey P; Nik-Zainal S; Campbell PJ
    Curr Protoc Bioinformatics; 2016 Dec; 56():15.9.1-15.9.17. PubMed ID: 27930809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Building (Viral) Phylogenetic Trees Using a Maximum Likelihood Approach.
    King KM; Van Doorslaer K
    Curr Protoc Microbiol; 2018 Nov; 51(1):e63. PubMed ID: 30265446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Algorithms for efficient near-perfect phylogenetic tree reconstruction in theory and practice.
    Sridhar S; Dhamdhere K; Blelloch G; Halperin E; Ravi R; Schwartz R
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(4):561-71. PubMed ID: 17975268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing Phylogenetic Approaches to Reconstructing Cell Lineage From Microsatellites With Missing Data.
    Lyne AM; Perie L
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2291-2301. PubMed ID: 32386163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CLImAT-HET: detecting subclonal copy number alterations and loss of heterozygosity in heterogeneous tumor samples from whole-genome sequencing data.
    Yu Z; Li A; Wang M
    BMC Med Genomics; 2017 Mar; 10(1):15. PubMed ID: 28298214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MixClone: a mixture model for inferring tumor subclonal populations.
    Li Y; Xie X
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S1. PubMed ID: 25707430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inference of tumor phylogenies with improved somatic mutation discovery.
    Salari R; Saleh SS; Kashef-Haghighi D; Khavari D; Newburger DE; West RB; Sidow A; Batzoglou S
    J Comput Biol; 2013 Nov; 20(11):933-44. PubMed ID: 24195709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstructing cancer phylogenies using Pairtree, a clone tree reconstruction algorithm.
    Kulman E; Wintersinger J; Morris Q
    STAR Protoc; 2022 Dec; 3(4):101706. PubMed ID: 36129821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogenetic reconstruction methods: an overview.
    De Bruyn A; Martin DP; Lefeuvre P
    Methods Mol Biol; 2014; 1115():257-77. PubMed ID: 24415479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.