These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 29927092)

  • 1. Zero-dimensional lumped approach to incorporate the dynamic part of the pressure at vessel junctions in a 1D wave propagation model.
    van den Boom T; Stevens R; Delhaas T; van de Vosse F; Huberts W
    Int J Numer Method Biomed Eng; 2018 Sep; 34(9):e3116. PubMed ID: 29927092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling.
    Boileau E; Nithiarasu P; Blanco PJ; Müller LO; Fossan FE; Hellevik LR; Donders WP; Huberts W; Willemet M; Alastruey J
    Int J Numer Method Biomed Eng; 2015 Oct; 31(10):. PubMed ID: 26100764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A numerical method of reduced complexity for simulating vascular hemodynamics using coupled 0D lumped and 1D wave propagation models.
    Kroon W; Huberts W; Bosboom M; van de Vosse F
    Comput Math Methods Med; 2012; 2012():156094. PubMed ID: 22654957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An implicit solver for 1D arterial network models.
    Carson J; Van Loon R
    Int J Numer Method Biomed Eng; 2017 Jul; 33(7):. PubMed ID: 27709800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart.
    Formaggia L; Lamponi D; Tuveri M; Veneziani A
    Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):273-88. PubMed ID: 17132614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Verification and comparison of four numerical schemes for a 1D viscoelastic blood flow model.
    Wang X; Fullana JM; Lagrée PY
    Comput Methods Biomech Biomed Engin; 2015; 18(15):1704-25. PubMed ID: 25145651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".
    Hewlin RL; Kizito JP
    Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multiscale approach for modelling wave propagation in an arterial segment.
    Pontrelli G
    Comput Methods Biomech Biomed Engin; 2004 Apr; 7(2):79-89. PubMed ID: 15203956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An improved baseline model for a human arterial network to study the impact of aneurysms on pressure-flow waveforms.
    Low K; van Loon R; Sazonov I; Bevan RL; Nithiarasu P
    Int J Numer Method Biomed Eng; 2012 Dec; 28(12):1224-46. PubMed ID: 23212798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A lumped model for blood flow and pressure in the systemic arteries based on an approximate velocity profile function.
    Huberts W; Bosboom EM; van de Vosse FN
    Math Biosci Eng; 2009 Jan; 6(1):27-40. PubMed ID: 19292506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scalability and in vivo validation of a multiscale numerical model of the left coronary circulation.
    Mynard JP; Penny DJ; Smolich JJ
    Am J Physiol Heart Circ Physiol; 2014 Feb; 306(4):H517-28. PubMed ID: 24363304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-dimensional model for propagation of a pressure wave in a model of the human arterial network: comparison of theoretical and experimental results.
    Saito M; Ikenaga Y; Matsukawa M; Watanabe Y; Asada T; Lagrée PY
    J Biomech Eng; 2011 Dec; 133(12):121005. PubMed ID: 22206422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel porous media-based approach to outflow boundary resistances of 1D arterial blood flow models.
    Coccarelli A; Prakash A; Nithiarasu P
    Biomech Model Mechanobiol; 2019 Aug; 18(4):939-951. PubMed ID: 30900050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of 1D blood flow models of the human arterial network to differential pressure predictions.
    Johnson DA; Rose WC; Edwards JW; Naik UP; Beris AN
    J Biomech; 2011 Mar; 44(5):869-76. PubMed ID: 21236432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A unified method for estimating pressure losses at vascular junctions.
    Mynard JP; Valen-Sendstad K
    Int J Numer Method Biomed Eng; 2015 Jul; 31(7):e02717. PubMed ID: 25833463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the anatomical definition of arterial networks in blood flow simulations: comparison of detailed and simplified models.
    Blanco PJ; Müller LO; Watanabe SM; Feijóo RA
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1663-1678. PubMed ID: 32034549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated generation of 0D and 1D reduced-order models of patient-specific blood flow.
    Pfaller MR; Pham J; Verma A; Pegolotti L; Wilson NM; Parker DW; Yang W; Marsden AL
    Int J Numer Method Biomed Eng; 2022 Oct; 38(10):e3639. PubMed ID: 35875875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-line parameter identification of the lumped arterial system model: A simulation study.
    Huang F; Ying S
    PLoS One; 2020; 15(7):e0236012. PubMed ID: 32649706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large vessels as a tree of transmission lines incorporated in the CircAdapt whole-heart model: A computational tool to examine heart-vessel interaction.
    Heusinkveld MHG; Huberts W; Lumens J; Arts T; Delhaas T; Reesink KD
    PLoS Comput Biol; 2019 Jul; 15(7):e1007173. PubMed ID: 31306411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.