These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29927114)

  • 1. Xenobiotic Nucleic Acid (XNA) Synthesis by Phi29 DNA Polymerase.
    Torres LL; Pinheiro VB
    Curr Protoc Chem Biol; 2018 Jun; 10(2):e41. PubMed ID: 29927114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. XNA Synthesis and Reverse Transcription by Engineered Thermophilic Polymerases.
    Cozens C; Pinheiro VB
    Curr Protoc Chem Biol; 2018 Sep; 10(3):e47. PubMed ID: 30039931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compartmentalized Self-Tagging for In Vitro-Directed Evolution of XNA Polymerases.
    Pinheiro VB; Arangundy-Franklin S; Holliger P
    Curr Protoc Nucleic Acid Chem; 2014 Jun; 57():9.9.1-18. PubMed ID: 24961724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphonomethyl Oligonucleotides as Backbone-Modified Artificial Genetic Polymers.
    Liu C; Cozens C; Jaziri F; Rozenski J; Maréchal A; Dumbre S; Pezo V; Marlière P; Pinheiro VB; Groaz E; Herdewijn P
    J Am Chem Soc; 2018 May; 140(21):6690-6699. PubMed ID: 29722977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of translocation and substrate binding in individual complexes formed with active site mutants of {phi}29 DNA polymerase.
    Dahl JM; Wang H; Lázaro JM; Salas M; Lieberman KR
    J Biol Chem; 2014 Mar; 289(10):6350-6361. PubMed ID: 24464581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Processive replication of single DNA molecules in a nanopore catalyzed by phi29 DNA polymerase.
    Lieberman KR; Cherf GM; Doody MJ; Olasagasti F; Kolodji Y; Akeson M
    J Am Chem Soc; 2010 Dec; 132(50):17961-72. PubMed ID: 21121604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redesigning the Genetic Polymers of Life.
    Chaput JC
    Acc Chem Res; 2021 Feb; 54(4):1056-1065. PubMed ID: 33533593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct sequencing of 2'-deoxy-2'-fluoroarabinonucleic acid (FANA) using nanopore-induced phase-shift sequencing (NIPSS).
    Yan S; Li X; Zhang P; Wang Y; Chen HY; Huang S; Yu H
    Chem Sci; 2019 Mar; 10(10):3110-3117. PubMed ID: 30996894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole Genome Amplification by Isothermal Multiple Strand Displacement Using Phi29 DNA Polymerase.
    Kroneis T; El-Heliebi A
    Methods Mol Biol; 2015; 1347():111-7. PubMed ID: 26374313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino-acyl tXNA as inhibitors or amino acid donors in peptide synthesis.
    Rietmeyer L; Li De La Sierra-Gallay I; Schepers G; Dorchêne D; Iannazzo L; Patin D; Touzé T; van Tilbeurgh H; Herdewijn P; Ethève-Quelquejeu M; Fonvielle M
    Nucleic Acids Res; 2022 Nov; 50(20):11415-11425. PubMed ID: 36350642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro evolution of phi29 DNA polymerase using isothermal compartmentalized self replication technique.
    Povilaitis T; Alzbutas G; Sukackaite R; Siurkus J; Skirgaila R
    Protein Eng Des Sel; 2016 Dec; 29(12):617-628. PubMed ID: 27672049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic Life with Alternative Nucleic Acids as Genetic Materials.
    Nie P; Bai Y; Mei H
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32751873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional Comparison of Laboratory-Evolved XNA Polymerases for Synthetic Biology.
    Medina E; Yik EJ; Herdewijn P; Chaput JC
    ACS Synth Biol; 2021 Jun; 10(6):1429-1437. PubMed ID: 34029459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyamines promote xenobiotic nucleic acid synthesis by modified thermophilic polymerase mutants.
    Hoshino H; Kasahara Y; Obika S
    RSC Chem Biol; 2024 May; 5(5):467-472. PubMed ID: 38725908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward safe genetically modified organisms through the chemical diversification of nucleic acids.
    Herdewijn P; Marlière P
    Chem Biodivers; 2009 Jun; 6(6):791-808. PubMed ID: 19554563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-free cloning using phi29 DNA polymerase.
    Hutchison CA; Smith HO; Pfannkoch C; Venter JC
    Proc Natl Acad Sci U S A; 2005 Nov; 102(48):17332-6. PubMed ID: 16286637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rolling-circle amplification of viral DNA genomes using phi29 polymerase.
    Johne R; Müller H; Rector A; van Ranst M; Stevens H
    Trends Microbiol; 2009 May; 17(5):205-11. PubMed ID: 19375325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the first aspartate residue of the "YxDTDS" motif of phi29 DNA polymerase as a metal ligand during both TP-primed and DNA-primed DNA synthesis.
    Saturno J; Lázaro JM; Blanco L; Salas M
    J Mol Biol; 1998 Oct; 283(3):633-42. PubMed ID: 9784372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and polymerase recognition of a pyrrolocytidine TNA triphosphate.
    Mei H; Wang Y; Yik EJ; Chaput JC
    Biopolymers; 2021 Jan; 112(1):e23388. PubMed ID: 32615644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TempliPhi, phi29 DNA polymerase based rolling circle amplification of templates for DNA sequencing.
    Nelson JR; Cai YC; Giesler TL; Farchaus JW; Sundaram ST; Ortiz-Rivera M; Hosta LP; Hewitt PL; Mamone JA; Palaniappan C; Fuller CW
    Biotechniques; 2002 Jun; Suppl():44-7. PubMed ID: 12083397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.