These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Opioids in the regulation of food intake and energy expenditure. Levine AS; Atkinson RL Fed Proc; 1987 Jan; 46(1):159-62. PubMed ID: 3542574 [TBL] [Abstract][Full Text] [Related]
43. Opioid systems and feeding in the slug, Limax maximus: similarities to and implications for mammalian feeding. Kavaliers M; Hirst M; Teskey GC Brain Res Bull; 1985 Jun; 14(6):681-5. PubMed ID: 2992721 [TBL] [Abstract][Full Text] [Related]
45. Feeding behavior and its responsiveness to naloxone differ in lean and obese sheep. Alavi FK; McCann JP; Mauromoustakis A; Sangiah S Physiol Behav; 1993 Feb; 53(2):317-23. PubMed ID: 8383348 [TBL] [Abstract][Full Text] [Related]
46. Multiple opioid receptor systems in brain and spinal cord: Part I. Yaksh TL Eur J Anaesthesiol; 1984 Jun; 1(2):171-99. PubMed ID: 6152613 [TBL] [Abstract][Full Text] [Related]
47. General, kappa, delta and mu opioid receptor antagonists mediate feeding elicited by the GABA-B agonist baclofen in the ventral tegmental area and nucleus accumbens shell in rats: reciprocal and regional interactions. Miner P; Shimonova L; Khaimov A; Borukhova Y; Ilyayeva E; Ranaldi R; Bodnar RJ Brain Res; 2012 Mar; 1443():34-51. PubMed ID: 22305145 [TBL] [Abstract][Full Text] [Related]
48. The occurrence and receptor specificity of endogenous opioid peptides within the pancreas and liver of the rat. Comparison with brain. Khawaja XZ; Green IC; Thorpe JR; Titheradge MA Biochem J; 1990 Apr; 267(1):233-40. PubMed ID: 1970240 [TBL] [Abstract][Full Text] [Related]
49. Bidirectional effects of opioids in motivational processes and the involvement of D1 dopamine receptors. Herz A NIDA Res Monogr; 1988; 90():17-26. PubMed ID: 2855853 [TBL] [Abstract][Full Text] [Related]
50. Some aspects of physiology and pharmacology of endogenous opioid peptides. Przewłocki R Pol J Pharmacol Pharm; 1984; 36(2-3):137-58. PubMed ID: 6147828 [TBL] [Abstract][Full Text] [Related]
51. Reduction by central beta-funaltrexamine of food intake in rats under freely-feeding, deprivation and glucoprivic conditions. Arjune D; Standifer KM; Pasternak GW; Bodnar RJ Brain Res; 1990 Dec; 535(1):101-9. PubMed ID: 1963340 [TBL] [Abstract][Full Text] [Related]
52. Arcuate nucleus lesions reduce opioid stress-induced analgesia (SIA) and enhance non-opioid SIA in rats. Kelsey JE; Hoerman WA; Kimball LD; Radack LS; Carter MV Brain Res; 1986 Sep; 382(2):278-90. PubMed ID: 2944564 [TBL] [Abstract][Full Text] [Related]
53. Social conflict activates opioid analgesic and ingestive behaviors in male mice. Teskey GC; Kavaliers M; Hirst M Life Sci; 1984 Jul; 35(3):303-15. PubMed ID: 6087057 [TBL] [Abstract][Full Text] [Related]
54. Adrenal-pituitary axis and the opiate system; corticosteroid-adrencorticotropic hormones and the opiate system. Mousa S; Couri D Subst Alcohol Actions Misuse; 1983; 4(1):1-18. PubMed ID: 6312619 [No Abstract] [Full Text] [Related]
55. Opioid peptides and the control of human ingestive behaviour. Yeomans MR; Gray RW Neurosci Biobehav Rev; 2002 Oct; 26(6):713-28. PubMed ID: 12479844 [TBL] [Abstract][Full Text] [Related]
56. Evidence that inhibition of nicotine-mediated catecholamine secretion from adrenal chromaffin cells by enkephalin, beta-endorphin, dynorphin (1-13), and opiates is not mediated via specific opiate receptors. Dean DM; Lemaire S; Livett BG J Neurochem; 1982 Mar; 38(3):606-14. PubMed ID: 6276506 [TBL] [Abstract][Full Text] [Related]