These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 29927610)

  • 1. Band-Edge Exciton in CdSe and Other II-VI and III-V Compound Semiconductor Nanocrystals - Revisited.
    Sercel PC; Efros AL
    Nano Lett; 2018 Jul; 18(7):4061-4068. PubMed ID: 29927610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exciton Fine Structure in Perovskite Nanocrystals.
    Sercel PC; Lyons JL; Wickramaratne D; Vaxenburg R; Bernstein N; Efros AL
    Nano Lett; 2019 Jun; 19(6):4068-4077. PubMed ID: 31088061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shape dependence of band-edge exciton fine structure in CdSe nanocrystals.
    Zhao Q; Graf PA; Jones WB; Franceschetti A; Li J; Wang LW; Kim K
    Nano Lett; 2007 Nov; 7(11):3274-80. PubMed ID: 17900160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nano-engineered electron-hole exchange interaction controls exciton dynamics in core-shell semiconductor nanocrystals.
    Brovelli S; Schaller RD; Crooker SA; García-Santamaría F; Chen Y; Viswanatha R; Hollingsworth JA; Htoon H; Klimov VI
    Nat Commun; 2011; 2():280. PubMed ID: 21505436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revealing the Exciton Fine Structure in Lead Halide Perovskite Nanocrystals.
    Hou L; Tamarat P; Lounis B
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33924196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Comparative Study of the Band-Edge Exciton Fine Structure in Zinc Blende and Wurtzite CdSe Nanocrystals.
    Golovatenko AA; Kalitukha IV; Dimitriev GS; Sapega VF; Rakhlin MV; Galimov AI; Shubina TV; Shornikova EV; Qiang G; Yakovlev DR; Bayer M; Biermann A; Hoffmann A; Aubert T; Hens Z; Rodina AV
    Nanomaterials (Basel); 2022 Dec; 12(23):. PubMed ID: 36500892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions of exciton fine structure and hole trapping on the hole state filling effect in the transient absorption spectra of CdSe quantum dots.
    He S; Li Q; Jin T; Lian T
    J Chem Phys; 2022 Feb; 156(5):054704. PubMed ID: 35135264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Band-Edge Exciton Fine Structure and Recombination Dynamics in InP/ZnS Colloidal Nanocrystals.
    Biadala L; Siebers B; Beyazit Y; Tessier MD; Dupont D; Hens Z; Yakovlev DR; Bayer M
    ACS Nano; 2016 Mar; 10(3):3356-64. PubMed ID: 26889780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring the exciton fine structure of cadmium selenide nanocrystals with shape anisotropy and magnetic field.
    Sinito C; Fernée MJ; Goupalov SV; Mulvaney P; Tamarat P; Lounis B
    ACS Nano; 2014 Nov; 8(11):11651-6. PubMed ID: 25329623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Addressing the exciton fine structure in colloidal nanocrystals: the case of CdSe nanoplatelets.
    Shornikova EV; Biadala L; Yakovlev DR; Sapega VF; Kusrayev YG; Mitioglu AA; Ballottin MV; Christianen PCM; Belykh VV; Kochiev MV; Sibeldin NN; Golovatenko AA; Rodina AV; Gippius NA; Kuntzmann A; Jiang Y; Nasilowski M; Dubertret B; Bayer M
    Nanoscale; 2018 Jan; 10(2):646-656. PubMed ID: 29239445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dark exciton ground state promotes photon-pair emission in individual perovskite nanocrystals.
    Tamarat P; Hou L; Trebbia JB; Swarnkar A; Biadala L; Louyer Y; Bodnarchuk MI; Kovalenko MV; Even J; Lounis B
    Nat Commun; 2020 Nov; 11(1):6001. PubMed ID: 33243976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoluminescence Enhancement through Symmetry Breaking Induced by Defects in Nanocrystals.
    Sercel PC; Shabaev A; Efros AL
    Nano Lett; 2017 Aug; 17(8):4820-4830. PubMed ID: 28715222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient biexciton emission in elongated CdSe/ZnS nanocrystals.
    Louyer Y; Biadala L; Trebbia JB; Fernée MJ; Tamarat P; Lounis B
    Nano Lett; 2011 Oct; 11(10):4370-5. PubMed ID: 21916453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exciton Fine Structure of CdSe/CdS Nanocrystals Determined by Polarization Microscopy at Room Temperature.
    Vezzoli S; Manceau M; Leménager G; Glorieux Q; Giacobino E; Carbone L; De Vittorio M; Bramati A
    ACS Nano; 2015 Aug; 9(8):7992-8003. PubMed ID: 26212764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissecting charge relaxation pathways in CdSe/CdS nanocrystals using femtosecond two-dimensional electronic spectroscopy.
    Jarrett JW; Yi C; Stoll T; Rehault J; Oriana A; Branchi F; Cerullo G; Knappenberger KL
    Nanoscale; 2017 Mar; 9(13):4572-4577. PubMed ID: 28321446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-Lived Dark Exciton Emission in Mn-Doped CsPbCl
    Xu K; Vliem JF; Meijerink A
    J Phys Chem C Nanomater Interfaces; 2019 Jan; 123(1):979-984. PubMed ID: 30873253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biexciton Auger Recombination in CdSe/CdS Core/Shell Semiconductor Nanocrystals.
    Vaxenburg R; Rodina A; Lifshitz E; L Efros A
    Nano Lett; 2016 Apr; 16(4):2503-11. PubMed ID: 26950398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revealing the Band-Edge Exciton Fine Structure of Single InP Nanocrystals.
    Prin E; Xia C; Won YH; Jang E; Goupalov SV; Tamarat P; Lounis B
    Nano Lett; 2023 Jul; 23(13):6067-6072. PubMed ID: 37350682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bright and dark excitons in semiconductor carbon nanotubes: insights from electronic structure calculations.
    Kilina S; Badaeva E; Piryatinski A; Tretiak S; Saxena A; Bishop AR
    Phys Chem Chem Phys; 2009 Jun; 11(21):4113-23. PubMed ID: 19458812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.