BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 29927936)

  • 1. Solving the RNA design problem with reinforcement learning.
    Eastman P; Shi J; Ramsundar B; Pande VS
    PLoS Comput Biol; 2018 Jun; 14(6):e1006176. PubMed ID: 29927936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EternaBrain: Automated RNA design through move sets and strategies from an Internet-scale RNA videogame.
    Koodli RV; Keep B; Coppess KR; Portela F; ; Das R
    PLoS Comput Biol; 2019 Jun; 15(6):e1007059. PubMed ID: 31247029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA design using simulated SHAPE data.
    Lotfi M; Zare-Mirakabad F; Montaseri S
    Genes Genet Syst; 2018 May; 92(6):257-265. PubMed ID: 28757510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning the Fastest RNA Folding Path Based on Reinforcement Learning and Monte Carlo Tree Search.
    Mao K; Xiao Y
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Principles for Predicting RNA Secondary Structure Design Difficulty.
    Anderson-Lee J; Fisker E; Kosaraju V; Wu M; Kong J; Lee J; Lee M; Zada M; Treuille A; Das R;
    J Mol Biol; 2016 Feb; 428(5 Pt A):748-757. PubMed ID: 26902426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RiboDiffusion: tertiary structure-based RNA inverse folding with generative diffusion models.
    Huang H; Lin Z; He D; Hong L; Li Y
    Bioinformatics; 2024 Jun; 40(Supplement_1):i347-i356. PubMed ID: 38940178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNAiFOLD: a constraint programming algorithm for RNA inverse folding and molecular design.
    Garcia-Martin JA; Clote P; Dotu I
    J Bioinform Comput Biol; 2013 Apr; 11(2):1350001. PubMed ID: 23600819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA design rules from a massive open laboratory.
    Lee J; Kladwang W; Lee M; Cantu D; Azizyan M; Kim H; Limpaecher A; Yoon S; Treuille A; Das R;
    Proc Natl Acad Sci U S A; 2014 Feb; 111(6):2122-7. PubMed ID: 24469816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary solution for the RNA design problem.
    Esmaili-Taheri A; Ganjtabesh M; Mohammad-Noori M
    Bioinformatics; 2014 May; 30(9):1250-8. PubMed ID: 24407223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. aRNAque: an evolutionary algorithm for inverse pseudoknotted RNA folding inspired by Lévy flights.
    Merleau NSC; Smerlak M
    BMC Bioinformatics; 2022 Aug; 23(1):335. PubMed ID: 35964008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new algorithm for RNA secondary structure design.
    Andronescu M; Fejes AP; Hutter F; Hoos HH; Condon A
    J Mol Biol; 2004 Feb; 336(3):607-24. PubMed ID: 15095976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reinforced Adversarial Neural Computer for de Novo Molecular Design.
    Putin E; Asadulaev A; Ivanenkov Y; Aladinskiy V; Sanchez-Lengeling B; Aspuru-Guzik A; Zhavoronkov A
    J Chem Inf Model; 2018 Jun; 58(6):1194-1204. PubMed ID: 29762023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational design of RNAs with complex energy landscapes.
    Höner zu Siederdissen C; Hammer S; Abfalter I; Hofacker IL; Flamm C; Stadler PF
    Biopolymers; 2013 Dec; 99(12):1124-36. PubMed ID: 23818234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A New Method to Predict RNA Secondary Structure Based on RNA Folding Simulation.
    Liu Y; Zhao Q; Zhang H; Xu R; Li Y; Wei L
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(5):990-995. PubMed ID: 26552091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA inverse folding using Monte Carlo tree search.
    Yang X; Yoshizoe K; Taneda A; Tsuda K
    BMC Bioinformatics; 2017 Nov; 18(1):468. PubMed ID: 29110632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. incaRNAfbinv: a web server for the fragment-based design of RNA sequences.
    Drory Retwitzer M; Reinharz V; Ponty Y; Waldispühl J; Barash D
    Nucleic Acids Res; 2016 Jul; 44(W1):W308-14. PubMed ID: 27185893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Length-Dependent Deep Learning Model for RNA Secondary Structure Prediction.
    Mao K; Wang J; Xiao Y
    Molecules; 2022 Feb; 27(3):. PubMed ID: 35164295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of autonomous problem solving process by dynamic construction of task models in multiple tasks environment.
    Ohigashi Y; Omori T
    Neural Netw; 2006 Oct; 19(8):1169-80. PubMed ID: 16989982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ERD: a fast and reliable tool for RNA design including constraints.
    Esmaili-Taheri A; Ganjtabesh M
    BMC Bioinformatics; 2015 Jan; 16():20. PubMed ID: 25626878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free energy minimization to predict RNA secondary structures and computational RNA design.
    Churkin A; Weinbrand L; Barash D
    Methods Mol Biol; 2015; 1269():3-16. PubMed ID: 25577369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.