BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 29928295)

  • 1. Genomewide association analyses of fitness traits in captive-reared Chinook salmon: Applications in evaluating conservation strategies.
    Waters CD; Hard JJ; Brieuc MSO; Fast DE; Warheit KI; Knudsen CM; Bosch WJ; Naish KA
    Evol Appl; 2018 Jul; 11(6):853-868. PubMed ID: 29928295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic and phenotypic effects of inbreeding across two different hatchery management regimes in Chinook salmon.
    Waters CD; Hard JJ; Fast DE; Knudsen CM; Bosch WJ; Naish KA
    Mol Ecol; 2020 Feb; 29(4):658-672. PubMed ID: 31957935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effectiveness of managed gene flow in reducing genetic divergence associated with captive breeding.
    Waters CD; Hard JJ; Brieuc MS; Fast DE; Warheit KI; Waples RS; Knudsen CM; Bosch WJ; Naish KA
    Evol Appl; 2015 Dec; 8(10):956-71. PubMed ID: 26640521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of Random Forest with population-based outlier analyses provides insight on the genomic basis and evolution of run timing in Chinook salmon (Oncorhynchus tshawytscha).
    Brieuc MS; Ono K; Drinan DP; Naish KA
    Mol Ecol; 2015 Jun; 24(11):2729-46. PubMed ID: 25913096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic evidence for domestication selection in three hatchery populations of Chinook salmon,
    Howe NS; Hale MC; Waters CD; Schaal SM; Shedd KR; Larson WA
    Evol Appl; 2024 Feb; 17(2):e13656. PubMed ID: 38357359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Population genomic analyses of early-phase Atlantic Salmon (Salmo salar) domestication/captive breeding.
    Mäkinen H; Vasemägi A; McGinnity P; Cross TF; Primmer CR
    Evol Appl; 2015 Jan; 8(1):93-107. PubMed ID: 25667605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A single generation in the wild increases fitness for descendants of hatchery-origin Chinook salmon (
    Dayan DI; Sard NM; Johnson MA; Fitzpatrick CK; Couture R; O'Malley KG
    Evol Appl; 2024 Apr; 17(4):e13678. PubMed ID: 38617826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Captive rearing effects on the methylome of Atlantic salmon after oceanic migration: Sex-specificity and intergenerational stability.
    Venney CJ; Bouchard R; April J; Normandeau E; Lecomte L; Côté G; Bernatchez L
    Mol Ecol Resour; 2023 Feb; ():. PubMed ID: 36760032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation and association of candidate markers for adult migration timing and fitness in Chinook Salmon.
    Koch IJ; Narum SR
    Evol Appl; 2020 Oct; 13(9):2316-2332. PubMed ID: 33005226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term evaluation of fitness and demographic effects of a Chinook Salmon supplementation program.
    Janowitz-Koch I; Rabe C; Kinzer R; Nelson D; Hess MA; Narum SR
    Evol Appl; 2019 Mar; 12(3):456-469. PubMed ID: 30828367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of chinook salmon (Oncorhynchus tshawytscha) populations in New Zealand: pattern, rate, and process.
    Quinn TP; Kinnison MT; Unwin MJ
    Genetica; 2001; 112-113():493-513. PubMed ID: 11838785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fitness of hatchery-reared salmonids in the wild.
    Araki H; Berejikian BA; Ford MJ; Blouin MS
    Evol Appl; 2008 May; 1(2):342-55. PubMed ID: 25567636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maintaining a wild phenotype in a conservation hatchery program for Chinook salmon: The effect of managed breeding on early male maturation.
    Larsen DA; Harstad DL; Fuhrman AE; Knudsen CM; Schroder SL; Bosch WJ; Galbreath PF; Fast DE; Beckman BR
    PLoS One; 2019; 14(5):e0216168. PubMed ID: 31091265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dense linkage map for Chinook salmon (Oncorhynchus tshawytscha) reveals variable chromosomal divergence after an ancestral whole genome duplication event.
    Brieuc MS; Waters CD; Seeb JE; Naish KA
    G3 (Bethesda); 2014 Mar; 4(3):447-60. PubMed ID: 24381192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive genetic markers discriminate migratory runs of Chinook salmon (Oncorhynchus tshawytscha) amid continued gene flow.
    O'Malley KG; Jacobson DP; Kurth R; Dill AJ; Banks MA
    Evol Appl; 2013 Dec; 6(8):1184-94. PubMed ID: 24478800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimates of natural selection in a salmon population in captive and natural environments.
    Ford MJ; Hard JJ; Boelts B; LaHood E; Miller J
    Conserv Biol; 2008 Jun; 22(3):783-94. PubMed ID: 18577092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single nucleotide polymorphisms unravel hierarchical divergence and signatures of selection among Alaskan sockeye salmon (Oncorhynchus nerka) populations.
    Gomez-Uchida D; Seeb JE; Smith MJ; Habicht C; Quinn TP; Seeb LW
    BMC Evol Biol; 2011 Feb; 11():48. PubMed ID: 21332997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Erratum: High-Throughput Identification of Resistance to Pseudomonas syringae pv. Tomato in Tomato using Seedling Flood Assay.
    J Vis Exp; 2023 Oct; (200):. PubMed ID: 37851522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Candidate loci reveal genetic differentiation between temporally divergent migratory runs of Chinook salmon (Oncorhynchus tshawytscha).
    O'Malley KG; Camara MD; Banks MA
    Mol Ecol; 2007 Dec; 16(23):4930-41. PubMed ID: 17971087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.