These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 29928488)
1. Mechanisms for mTORC1 activation and synergistic induction of apoptosis by ruxolitinib and BH3 mimetics or autophagy inhibitors in JAK2-V617F-expressing leukemic cells including newly established PVTL-2. Ishida S; Akiyama H; Umezawa Y; Okada K; Nogami A; Oshikawa G; Nagao T; Miura O Oncotarget; 2018 Jun; 9(42):26834-26851. PubMed ID: 29928488 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of USP9X Downregulates JAK2-V617F and Induces Apoptosis Synergistically with BH3 Mimetics Preferentially in Ruxolitinib-Persistent JAK2-V617F-Positive Leukemic Cells. Akiyama H; Umezawa Y; Watanabe D; Okada K; Ishida S; Nogami A; Miura O Cancers (Basel); 2020 Feb; 12(2):. PubMed ID: 32050632 [TBL] [Abstract][Full Text] [Related]
3. Proliferation and survival signaling from both Jak2-V617F and Lyn involving GSK3 and mTOR/p70S6K/4EBP1 in PVTL-1 cell line newly established from acute myeloid leukemia transformed from polycythemia vera. Nagao T; Kurosu T; Umezawa Y; Nogami A; Oshikawa G; Tohda S; Yamamoto M; Miura O PLoS One; 2014; 9(1):e84746. PubMed ID: 24404189 [TBL] [Abstract][Full Text] [Related]
4. The PIM inhibitor AZD1208 synergizes with ruxolitinib to induce apoptosis of ruxolitinib sensitive and resistant JAK2-V617F-driven cells and inhibit colony formation of primary MPN cells. Mazzacurati L; Lambert QT; Pradhan A; Griner LN; Huszar D; Reuther GW Oncotarget; 2015 Nov; 6(37):40141-57. PubMed ID: 26472029 [TBL] [Abstract][Full Text] [Related]
7. Combination of ruxolitinib with ABT-737 exhibits synergistic effects in cells carrying concurrent JAK2 Yuan J; Song J; Chen C; Lv X; Bai J; Yang J; Zhou Y Invest New Drugs; 2022 Dec; 40(6):1194-1205. PubMed ID: 36044173 [TBL] [Abstract][Full Text] [Related]
8. Exploring redox vulnerabilities in JAK2 Lima K; Lopes LR; Machado-Neto JA Hematol Transfus Cell Ther; 2021; 43(4):430-436. PubMed ID: 32962959 [TBL] [Abstract][Full Text] [Related]
9. Effects of the JAK2 inhibitor, AZ960, on Pim/BAD/BCL-xL survival signaling in the human JAK2 V617F cell line SET-2. Gozgit JM; Bebernitz G; Patil P; Ye M; Parmentier J; Wu J; Su N; Wang T; Ioannidis S; Davies A; Huszar D; Zinda M J Biol Chem; 2008 Nov; 283(47):32334-43. PubMed ID: 18775810 [TBL] [Abstract][Full Text] [Related]
10. Effects of Ruxolitinib on Immune Checkpoint Molecule Expression in JAK2 V617F-Positive Cells. Fu J; Cheng Z; Zhang L; Wen X; Hao J Clin Lab; 2024 Oct; 70(10):. PubMed ID: 39382932 [TBL] [Abstract][Full Text] [Related]
11. FLT3-ITD induces expression of Pim kinases through STAT5 to confer resistance to the PI3K/Akt pathway inhibitors on leukemic cells by enhancing the mTORC1/Mcl-1 pathway. Okada K; Nogami A; Ishida S; Akiyama H; Chen C; Umezawa Y; Miura O Oncotarget; 2018 Feb; 9(10):8870-8886. PubMed ID: 29507660 [TBL] [Abstract][Full Text] [Related]
12. Co-targeting of Bcl-2 and mTOR pathway triggers synergistic apoptosis in BH3 mimetics resistant acute lymphoblastic leukemia. Iacovelli S; Ricciardi MR; Allegretti M; Mirabilii S; Licchetta R; Bergamo P; Rinaldo C; Zeuner A; Foà R; Milella M; McCubrey JA; Martelli AM; Tafuri A Oncotarget; 2015 Oct; 6(31):32089-103. PubMed ID: 26392332 [TBL] [Abstract][Full Text] [Related]
13. Nuclear-Cytoplasmic Transport Is a Therapeutic Target in Myelofibrosis. Yan D; Pomicter AD; Tantravahi S; Mason CC; Senina AV; Ahmann JM; Wang Q; Than H; Patel AB; Heaton WL; Eiring AM; Clair PM; Gantz KC; Redwine HM; Swierczek SI; Halverson BJ; Baloglu E; Shacham S; Khorashad JS; Kelley TW; Salama ME; Miles RR; Boucher KM; Prchal JT; O'Hare T; Deininger MW Clin Cancer Res; 2019 Apr; 25(7):2323-2335. PubMed ID: 30563936 [TBL] [Abstract][Full Text] [Related]
15. Cisplatin-induced apoptosis in non-small-cell lung cancer cells is dependent on Bax- and Bak-induction pathway and synergistically activated by BH3-mimetic ABT-263 in p53 wild-type and mutant cells. Matsumoto M; Nakajima W; Seike M; Gemma A; Tanaka N Biochem Biophys Res Commun; 2016 Apr; 473(2):490-6. PubMed ID: 26996126 [TBL] [Abstract][Full Text] [Related]
16. DNA damage stress and inhibition of Jak2-V617F cause its degradation and synergistically induce apoptosis through activation of GSK3β. Nagao T; Oshikawa G; Wu N; Kurosu T; Miura O PLoS One; 2011; 6(11):e27397. PubMed ID: 22087308 [TBL] [Abstract][Full Text] [Related]
17. Fullerene derivative prevents cellular transformation induced by JAK2 V617F mutant through inhibiting c-Jun N-terminal kinase pathway. Funakoshi-Tago M; Nagata T; Tago K; Tsukada M; Tanaka K; Nakamura S; Mashino T; Kasahara T Cell Signal; 2012 Nov; 24(11):2024-34. PubMed ID: 22750290 [TBL] [Abstract][Full Text] [Related]
18. Akt activation through the phosphorylation of erythropoietin receptor at tyrosine 479 is required for myeloproliferative disorder-associated JAK2 V617F mutant-induced cellular transformation. Kamishimoto J; Tago K; Kasahara T; Funakoshi-Tago M Cell Signal; 2011 May; 23(5):849-56. PubMed ID: 21255641 [TBL] [Abstract][Full Text] [Related]
19. Stathmin 1 inhibition amplifies ruxolitinib-induced apoptosis in JAK2V617F cells. Machado-Neto JA; de Melo Campos P; Favaro P; Lazarini M; da Silva Santos Duarte A; Lorand-Metze I; Costa FF; Saad ST; Traina F Oncotarget; 2015 Oct; 6(30):29573-84. PubMed ID: 26356819 [TBL] [Abstract][Full Text] [Related]
20. JAK2 inhibition in JAK2 Dahlström J; Xia C; Xing X; Yuan X; Björkholm M; Xu D Biochem Biophys Res Commun; 2020 Jun; 527(2):425-431. PubMed ID: 32334833 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]