BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 29928541)

  • 1. The art of building bone: emerging role of chondrocyte-to-osteoblast transdifferentiation in endochondral ossification.
    Aghajanian P; Mohan S
    Bone Res; 2018; 6():19. PubMed ID: 29928541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Emerging Role of Cell Transdifferentiation in Skeletal Development and Diseases.
    Wang K; Ma C; Feng JQ; Jing Y
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chondrocyte-to-osteoblast transformation in mandibular fracture repair.
    Wong SA; Hu DP; Slocum J; Lam C; Nguyen M; Miclau T; Marcucio RS; Bahney CS
    J Orthop Res; 2021 Aug; 39(8):1622-1632. PubMed ID: 33140859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of vasculature and chondrocyte to osteoblast transdifferentiation in craniofacial synovial joints: Implications for osteoarthritis diagnosis and therapy.
    Ruscitto A; Morel MM; Shawber CJ; Reeve G; Lecholop MK; Bonthius D; Yao H; Embree MC
    FASEB J; 2020 Mar; 34(3):4445-4461. PubMed ID: 32030828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone tissue and histological and molecular events during development of the long bones.
    Blumer MJF
    Ann Anat; 2021 May; 235():151704. PubMed ID: 33600952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice.
    Zhou X; von der Mark K; Henry S; Norton W; Adams H; de Crombrugghe B
    PLoS Genet; 2014 Dec; 10(12):e1004820. PubMed ID: 25474590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1-deficient mice.
    Takeda S; Bonnamy JP; Owen MJ; Ducy P; Karsenty G
    Genes Dev; 2001 Feb; 15(4):467-81. PubMed ID: 11230154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Study of DHA with Different Molecular Forms for Ameliorating Osteoporosis by Promoting Chondrocyte-to-Osteoblast Transdifferentiation in the Growth Plate of Ovariectomized Mice.
    Zhang T; Tian Y; Wang Q; Fu M; Xue C; Wang J
    J Agric Food Chem; 2021 Sep; 69(36):10562-10571. PubMed ID: 34464107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microenvironmental Regulation of Chondrocyte Plasticity in Endochondral Repair-A New Frontier for Developmental Engineering.
    Wong SA; Rivera KO; Miclau T; Alsberg E; Marcucio RS; Bahney CS
    Front Bioeng Biotechnol; 2018; 6():58. PubMed ID: 29868574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel in vitro assay to study chondrocyte-to-osteoblast transdifferentiation.
    Tschaffon MEA; Reber SO; Schoppa A; Nandi S; Cirstea IC; Aszodi A; Ignatius A; Haffner-Luntzer M
    Endocrine; 2022 Jan; 75(1):266-275. PubMed ID: 34529238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis.
    Day TF; Guo X; Garrett-Beal L; Yang Y
    Dev Cell; 2005 May; 8(5):739-50. PubMed ID: 15866164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of Chondrocytes in Endochondral Bone Formation and Fracture Repair.
    Hinton RJ; Jing Y; Jing J; Feng JQ
    J Dent Res; 2017 Jan; 96(1):23-30. PubMed ID: 27664203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue-engineered hypertrophic chondrocyte grafts enhanced long bone repair.
    Bernhard J; Ferguson J; Rieder B; Heimel P; Nau T; Tangl S; Redl H; Vunjak-Novakovic G
    Biomaterials; 2017 Sep; 139():202-212. PubMed ID: 28622604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Second Career for Chondrocytes-Transformation into Osteoblasts.
    Wolff LI; Hartmann C
    Curr Osteoporos Rep; 2019 Jun; 17(3):129-137. PubMed ID: 30949840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypertrophic chondrocytes at the junction of musculoskeletal structures.
    Chen N; Wu RWH; Lam Y; Chan WCW; Chan D
    Bone Rep; 2023 Dec; 19():101698. PubMed ID: 37485234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of cyclic guanosine monophosphate-dependent protein kinase II in chondrocyte hypertrophy during endochondral ossification.
    Kugimiya F; Chikuda H; Kamekura S; Ikeda T; Hoshi K; Ogasawara T; Nakamura K; Chung UI; Kawaguchi H
    Mod Rheumatol; 2005; 15(6):391-6. PubMed ID: 17029101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hedgehog Signaling in Endochondral Ossification.
    Ohba S
    J Dev Biol; 2016 Jun; 4(2):. PubMed ID: 29615586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chondrocytic ephrin B2 promotes cartilage destruction by osteoclasts in endochondral ossification.
    Tonna S; Poulton IJ; Taykar F; Ho PW; Tonkin B; Crimeen-Irwin B; Tatarczuch L; McGregor NE; Mackie EJ; Martin TJ; Sims NA
    Development; 2016 Feb; 143(4):648-57. PubMed ID: 26755702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone formation via cartilage models: the "borderline" chondrocyte.
    Bianco P; Cancedda FD; Riminucci M; Cancedda R
    Matrix Biol; 1998 Jul; 17(3):185-92. PubMed ID: 9707341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation.
    Yang L; Tsang KY; Tang HC; Chan D; Cheah KS
    Proc Natl Acad Sci U S A; 2014 Aug; 111(33):12097-102. PubMed ID: 25092332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.