BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 29928696)

  • 1. Viscoelastic properties of vimentin originate from nonequilibrium conformational changes.
    Block J; Witt H; Candelli A; Danes JC; Peterman EJG; Wuite GJL; Janshoff A; Köster S
    Sci Adv; 2018 Jun; 4(6):eaat1161. PubMed ID: 29928696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Keratin filament mechanics and energy dissipation are determined by metal-like plasticity.
    Lorenz C; Forsting J; Style RW; Klumpp S; Köster S
    Matter; 2023 Jun; 6(6):2019-2033. PubMed ID: 37332398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lateral Subunit Coupling Determines Intermediate Filament Mechanics.
    Lorenz C; Forsting J; Schepers AV; Kraxner J; Bauch S; Witt H; Klumpp S; Köster S
    Phys Rev Lett; 2019 Nov; 123(18):188102. PubMed ID: 31763918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments.
    Qin Z; Kreplak L; Buehler MJ
    PLoS One; 2009 Oct; 4(10):e7294. PubMed ID: 19806221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vimentin Intermediate Filaments Undergo Irreversible Conformational Changes during Cyclic Loading.
    Forsting J; Kraxner J; Witt H; Janshoff A; Köster S
    Nano Lett; 2019 Oct; 19(10):7349-7356. PubMed ID: 31498648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Desmin and vimentin intermediate filament networks: their viscoelastic properties investigated by mechanical rheometry.
    Schopferer M; Bär H; Hochstein B; Sharma S; Mücke N; Herrmann H; Willenbacher N
    J Mol Biol; 2009 Apr; 388(1):133-43. PubMed ID: 19281820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning intermediate filament mechanics by variation of pH and ion charges.
    Schepers AV; Lorenz C; Köster S
    Nanoscale; 2020 Jul; 12(28):15236-15245. PubMed ID: 32642745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viscoelastic properties of vimentin compared with other filamentous biopolymer networks.
    Janmey PA; Euteneuer U; Traub P; Schliwa M
    J Cell Biol; 1991 Apr; 113(1):155-60. PubMed ID: 2007620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissecting the 3-D structure of vimentin intermediate filaments by cryo-electron tomography.
    Goldie KN; Wedig T; Mitra AK; Aebi U; Herrmann H; Hoenger A
    J Struct Biol; 2007 Jun; 158(3):378-85. PubMed ID: 17289402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tensile properties of single desmin intermediate filaments.
    Kreplak L; Herrmann H; Aebi U
    Biophys J; 2008 Apr; 94(7):2790-9. PubMed ID: 18178641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanomechanical properties of vimentin intermediate filament dimers.
    Qin Z; Kreplak L; Buehler MJ
    Nanotechnology; 2009 Oct; 20(42):425101. PubMed ID: 19779230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear Loading-Rate-Dependent Force Response of Individual Vimentin Intermediate Filaments to Applied Strain.
    Block J; Witt H; Candelli A; Peterman EJ; Wuite GJ; Janshoff A; Köster S
    Phys Rev Lett; 2017 Jan; 118(4):048101. PubMed ID: 28186786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution and ultrastructure of plectin arrays in subclones of rat glioma C6 cells differing in intermediate filament protein (vimentin) expression.
    Foisner R; Bohn W; Mannweiler K; Wiche G
    J Struct Biol; 1995; 115(3):304-17. PubMed ID: 8573472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical properties of intermediate filaments: from tissues to single filaments and back.
    Kreplak L; Fudge D
    Bioessays; 2007 Jan; 29(1):26-35. PubMed ID: 17187357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the mechanical properties of single vimentin intermediate filaments by atomic force microscopy.
    Guzmán C; Jeney S; Kreplak L; Kasas S; Kulik AJ; Aebi U; Forró L
    J Mol Biol; 2006 Jul; 360(3):623-30. PubMed ID: 16765985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the relation between distinct components of the cytoskeleton: an epitope shared by intermediate filaments, microfilaments and cytoplasmic foci.
    Turner JR; Tartakoff AM
    Eur J Cell Biol; 1990 Apr; 51(2):259-64. PubMed ID: 1693574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multi-scale approach to understand the mechanobiology of intermediate filaments.
    Qin Z; Buehler MJ; Kreplak L
    J Biomech; 2010 Jan; 43(1):15-22. PubMed ID: 19811783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical properties of cytoplasmic intermediate filaments.
    Block J; Schroeder V; Pawelzyk P; Willenbacher N; Köster S
    Biochim Biophys Acta; 2015 Nov; 1853(11 Pt B):3053-64. PubMed ID: 25975455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colocalization of single ribosomes with intermediate filaments in puromycin-treated and serum-starved mouse embryo fibroblasts.
    Traub P; Bauer C; Hartig R; Grüb S; Stahl J
    Biol Cell; 1998 Jul; 90(4):319-37. PubMed ID: 9800350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical Properties of Intermediate Filament Proteins.
    Charrier EE; Janmey PA
    Methods Enzymol; 2016; 568():35-57. PubMed ID: 26795466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.