These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 29928788)

  • 1. Density Functional Theory - Machine Learning Approach to Analyze the Bandgap of Elemental Halide Perovskites and Ruddlesden-Popper Phases.
    Allam O; Holmes C; Greenberg Z; Kim KC; Jang SS
    Chemphyschem; 2018 Oct; 19(19):2559-2565. PubMed ID: 29928788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergence of Rashba-/Dresselhaus effects in Ruddlesden-Popper halide perovskites with octahedral rotations.
    Krach S; Forero-Correa N; Biega RI; Reyes-Lillo SE; Leppert L
    J Phys Condens Matter; 2023 Mar; 35(17):. PubMed ID: 36806018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational screening of methylammonium based halide perovskites with bandgaps suitable for perovskite-perovskite tandem solar cells.
    Kar M; Körzdörfer T
    J Chem Phys; 2018 Dec; 149(21):214701. PubMed ID: 30525730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cs
    Li J; Yu Q; He Y; Stoumpos CC; Niu G; Trimarchi GG; Guo H; Dong G; Wang D; Wang L; Kanatzidis MG
    J Am Chem Soc; 2018 Sep; 140(35):11085-11090. PubMed ID: 30081628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cation Engineering in Two-Dimensional Ruddlesden-Popper Lead Iodide Perovskites with Mixed Large A-Site Cations in the Cages.
    Fu Y; Jiang X; Li X; Traore B; Spanopoulos I; Katan C; Even J; Kanatzidis MG; Harel E
    J Am Chem Soc; 2020 Feb; 142(8):4008-4021. PubMed ID: 32031788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tin and germanium based two-dimensional Ruddlesden-Popper hybrid perovskites for potential lead-free photovoltaic and photoelectronic applications.
    Ma L; Ju MG; Dai J; Zeng XC
    Nanoscale; 2018 Jun; 10(24):11314-11319. PubMed ID: 29897093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion migration mechanism in all-inorganic Ruddlesden-Popper lead halide perovskites by first-principles calculations.
    Zhao S; Xiao L
    Phys Chem Chem Phys; 2021 Dec; 24(1):403-410. PubMed ID: 34897315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intergrowth between the Oxynitride Perovskite SrTaO
    Suemoto Y; Masubuchi Y; Nagamine Y; Matsutani A; Shibahara T; Yamazaki K; Kikkawa S
    Inorg Chem; 2018 Aug; 57(15):9086-9095. PubMed ID: 30010331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First-principles study of lead-free Ge-based 2D Ruddlesden-Popper hybrid perovskites for solar cell applications.
    Babaei M; Ahmadi V; Darvish G
    Phys Chem Chem Phys; 2022 Sep; 24(35):21052-21060. PubMed ID: 36004762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disparity of the Nature of the Band Gap between Halide and Chalcogenide Single Perovskites for Solar Cell Absorbers.
    Peng Y; Sun Q; Chen H; Yin WJ
    J Phys Chem Lett; 2019 Aug; 10(16):4566-4570. PubMed ID: 31340644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning Electronic and Structural Properties of Lead-Free Metal Halide Perovskites: A Comparative Study of 2D Ruddlesden-Popper and 3D Compositions.
    Dalmedico JF; Silveira DN; O de Araujo L; Wenzel W; Rêgo CRC; Dias AC; Guedes-Sobrinho D; Piotrowski MJ
    Chemphyschem; 2024 May; ():e202400118. PubMed ID: 38742372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning for Halide Perovskite Materials ABX
    Alhashmi A; Kanoun MB; Goumri-Said S
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37048955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nature of the Electronic and Optical Excitations of Ruddlesden-Popper Hybrid Organic-Inorganic Perovskites: The Role of the Many-Body Interactions.
    Giorgi G; Yamashita K; Palummo M
    J Phys Chem Lett; 2018 Oct; 9(19):5891-5896. PubMed ID: 30244580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable Ferroelectricity in Ruddlesden-Popper Halide Perovskites.
    Zhang Q; Solanki A; Parida K; Giovanni D; Li M; Jansen TLC; Pshenichnikov MS; Sum TC
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13523-13532. PubMed ID: 30854841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-Electronic Property Relationships of 2D Ruddlesden-Popper Tin- and Lead-based Iodide Perovskites.
    Zibouche N; Islam MS
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15328-15337. PubMed ID: 32159945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bulk and surface properties of the Ruddlesden-Popper oxynitride Sr
    Bouri M; Aschauer U
    Phys Chem Chem Phys; 2018 Jan; 20(4):2771-2776. PubMed ID: 29322129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ferroelectricity in Ruddlesden-Popper Chalcogenide Perovskites for Photovoltaic Application: The Role of Tolerance Factor.
    Zhang Y; Shimada T; Kitamura T; Wang J
    J Phys Chem Lett; 2017 Dec; 8(23):5834-5839. PubMed ID: 29110490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Layered 2D Halide Perovskites beyond the Ruddlesden-Popper Phase: Tailored Interlayer Chemistries for High-Performance Solar Cells.
    Gong J; Hao M; Zhang Y; Liu M; Zhou Y
    Angew Chem Int Ed Engl; 2022 Mar; 61(10):e202112022. PubMed ID: 34761495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ruddlesden-Popper Phase in Two-Dimensional Inorganic Halide Perovskites: A Plausible Model and the Supporting Observations.
    Yu Y; Zhang D; Yang P
    Nano Lett; 2017 Sep; 17(9):5489-5494. PubMed ID: 28796526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deterministic fabrication of arbitrary vertical heterostructures of two-dimensional Ruddlesden-Popper halide perovskites.
    Pan D; Fu Y; Spitha N; Zhao Y; Roy CR; Morrow DJ; Kohler DD; Wright JC; Jin S
    Nat Nanotechnol; 2021 Feb; 16(2):159-165. PubMed ID: 33257896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.