These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 29928860)
1. Correlated fluorescence quenching and topographic mapping of Light-Harvesting Complex II within surface-assembled aggregates and lipid bilayers. Adams PG; Vasilev C; Hunter CN; Johnson MP Biochim Biophys Acta Bioenerg; 2018 Oct; 1859(10):1075-1085. PubMed ID: 29928860 [TBL] [Abstract][Full Text] [Related]
2. The xanthophyll cycle affects reversible interactions between PsbS and light-harvesting complex II to control non-photochemical quenching. Sacharz J; Giovagnetti V; Ungerer P; Mastroianni G; Ruban AV Nat Plants; 2017 Jan; 3():16225. PubMed ID: 28134919 [TBL] [Abstract][Full Text] [Related]
3. On the PsbS-induced quenching in the plant major light-harvesting complex LHCII studied in proteoliposomes. Pawlak K; Paul S; Liu C; Reus M; Yang C; Holzwarth AR Photosynth Res; 2020 May; 144(2):195-208. PubMed ID: 32266611 [TBL] [Abstract][Full Text] [Related]
4. A novel method produces native light-harvesting complex II aggregates from the photosynthetic membrane revealing their role in nonphotochemical quenching. Shukla MK; Watanabe A; Wilson S; Giovagnetti V; Moustafa EI; Minagawa J; Ruban AV J Biol Chem; 2020 Dec; 295(51):17816-17826. PubMed ID: 33454016 [TBL] [Abstract][Full Text] [Related]
5. pH sensitivity of chlorophyll fluorescence quenching is determined by the detergent/protein ratio and the state of LHCII aggregation. Petrou K; Belgio E; Ruban AV Biochim Biophys Acta; 2014 Sep; 1837(9):1533-9. PubMed ID: 24321504 [TBL] [Abstract][Full Text] [Related]
6. Zeaxanthin independence of photophysics in light-harvesting complex II in a membrane environment. Son M; Pinnola A; Schlau-Cohen GS Biochim Biophys Acta Bioenerg; 2020 Jun; 1861(5-6):148115. PubMed ID: 32204904 [TBL] [Abstract][Full Text] [Related]
7. Photoprotective energy dissipation in higher plants involves alteration of the excited state energy of the emitting chlorophyll(s) in the light harvesting antenna II (LHCII). Johnson MP; Ruban AV J Biol Chem; 2009 Aug; 284(35):23592-601. PubMed ID: 19567871 [TBL] [Abstract][Full Text] [Related]
8. Characterization of fluorescent chlorophyll charge-transfer states as intermediates in the excited state quenching of light-harvesting complex II. Ostroumov EE; Götze JP; Reus M; Lambrev PH; Holzwarth AR Photosynth Res; 2020 May; 144(2):171-193. PubMed ID: 32307623 [TBL] [Abstract][Full Text] [Related]
9. Altered lipid acyl chain length controls energy dissipation in light-harvesting complex II proteoliposomes by hydrophobic mismatch. Li DH; Wilson S; Mastroianni G; Ruban AV J Photochem Photobiol B; 2023 Sep; 246():112758. PubMed ID: 37531665 [TBL] [Abstract][Full Text] [Related]
10. The Mechanism of Non-Photochemical Quenching in Plants: Localization and Driving Forces. Ruban AV; Wilson S Plant Cell Physiol; 2021 Oct; 62(7):1063-1072. PubMed ID: 33351147 [TBL] [Abstract][Full Text] [Related]
11. The causes of altered chlorophyll fluorescence quenching induction in the Arabidopsis mutant lacking all minor antenna complexes. Townsend AJ; Saccon F; Giovagnetti V; Wilson S; Ungerer P; Ruban AV Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):666-675. PubMed ID: 29548769 [TBL] [Abstract][Full Text] [Related]
12. Rapid regulation of photosynthetic light harvesting in the absence of minor antenna and reaction centre complexes. Saccon F; Giovagnetti V; Shukla MK; Ruban AV J Exp Bot; 2020 Jun; 71(12):3626-3637. PubMed ID: 32149343 [TBL] [Abstract][Full Text] [Related]
13. Assembly of the major light-harvesting complex II in lipid nanodiscs. Pandit A; Shirzad-Wasei N; Wlodarczyk LM; van Roon H; Boekema EJ; Dekker JP; de Grip WJ Biophys J; 2011 Nov; 101(10):2507-15. PubMed ID: 22098750 [TBL] [Abstract][Full Text] [Related]
14. PsbS protein modulates non-photochemical chlorophyll fluorescence quenching in membranes depleted of photosystems. Ware MA; Giovagnetti V; Belgio E; Ruban AV J Photochem Photobiol B; 2015 Nov; 152(Pt B):301-7. PubMed ID: 26233261 [TBL] [Abstract][Full Text] [Related]
15. Comparison of the thermodynamic landscapes of unfolding and formation of the energy dissipative state in the isolated light harvesting complex II. Santabarbara S; Horton P; Ruban AV Biophys J; 2009 Aug; 97(4):1188-97. PubMed ID: 19686667 [TBL] [Abstract][Full Text] [Related]
16. A Protein Environment-Modulated Energy Dissipation Channel in LHCII Antenna Complex. Saccon F; Durchan M; Bína D; Duffy CDP; Ruban AV; Polívka T iScience; 2020 Sep; 23(9):101430. PubMed ID: 32818906 [TBL] [Abstract][Full Text] [Related]
17. A proteoliposome-based system reveals how lipids control photosynthetic light harvesting. Tietz S; Leuenberger M; Höhner R; Olson AH; Fleming GR; Kirchhoff H J Biol Chem; 2020 Feb; 295(7):1857-1866. PubMed ID: 31929108 [TBL] [Abstract][Full Text] [Related]
18. LHCSR1 induces a fast and reversible pH-dependent fluorescence quenching in LHCII in Chlamydomonas reinhardtii cells. Dinc E; Tian L; Roy LM; Roth R; Goodenough U; Croce R Proc Natl Acad Sci U S A; 2016 Jul; 113(27):7673-8. PubMed ID: 27335457 [TBL] [Abstract][Full Text] [Related]
19. Nonphotochemical Chlorophyll Fluorescence Quenching: Mechanism and Effectiveness in Protecting Plants from Photodamage. Ruban AV Plant Physiol; 2016 Apr; 170(4):1903-16. PubMed ID: 26864015 [TBL] [Abstract][Full Text] [Related]
20. Time-resolved fluorescence analysis of the photosystem II antenna proteins in detergent micelles and liposomes. Moya I; Silvestri M; Vallon O; Cinque G; Bassi R Biochemistry; 2001 Oct; 40(42):12552-61. PubMed ID: 11601979 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]