These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 29929053)

  • 1. Curvelet Transform-based volume fusion for correcting signal loss artifacts in Time-of-Flight Magnetic Resonance Angiography data.
    Baghaie A; Schnell S; Bakhshinejad A; Fathi MF; D'Souza RM; Rayz VL
    Comput Biol Med; 2018 Aug; 99():142-153. PubMed ID: 29929053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Follow-up of intracranial aneurysms treated by flow diverter: comparison of three-dimensional time-of-flight MR angiography (3D-TOF-MRA) and contrast-enhanced MR angiography (CE-MRA) sequences with digital subtraction angiography as the gold standard.
    Attali J; Benaissa A; Soize S; Kadziolka K; Portefaix C; Pierot L
    J Neurointerv Surg; 2016 Jan; 8(1):81-6. PubMed ID: 25352582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of the inflow zone of unruptured cerebral aneurysms: comparison of 4D flow MRI and 3D TOF MRA data.
    Futami K; Sano H; Misaki K; Nakada M; Ueda F; Hamada J
    AJNR Am J Neuroradiol; 2014 Jul; 35(7):1363-70. PubMed ID: 24610906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of hemodynamics of intracranial aneurysms between MR fluid dynamics using 3D cine phase-contrast MRI and MR-based computational fluid dynamics.
    Isoda H; Ohkura Y; Kosugi T; Hirano M; Alley MT; Bammer R; Pelc NJ; Namba H; Sakahara H
    Neuroradiology; 2010 Oct; 52(10):913-20. PubMed ID: 19967532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical evaluation of subtracted pointwise encoding time reduction with radial acquisition-based magnetic resonance angiography compared to 3D time-of-flight magnetic resonance angiography for improved flow dephasing at 3 Tesla.
    Fu Q; Zhang XY; Deng XB; Liu DX
    Magn Reson Imaging; 2020 Nov; 73():104-110. PubMed ID: 32858182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated segmentation of cerebral vasculature with aneurysms in 3DRA and TOF-MRA using geodesic active regions: an evaluation study.
    Bogunović H; Pozo JM; Villa-Uriol MC; Majoie CB; van den Berg R; Gratama van Andel HA; Macho JM; Blasco J; Román LS; Frangi AF
    Med Phys; 2011 Jan; 38(1):210-22. PubMed ID: 21361189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimized 4D time-of-flight MR angiography using saturation pulse.
    Shibukawa S; Nishio H; Niwa T; Obara M; Miyati T; Hara T; Imai Y; Muro I
    J Magn Reson Imaging; 2016 Jun; 43(6):1320-6. PubMed ID: 26666670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative velocity investigations in cerebral arteries and aneurysms: 3D phase-contrast MR angiography, laser Doppler velocimetry and computational fluid dynamics.
    Hollnagel DI; Summers PE; Poulikakos D; Kollias SS
    NMR Biomed; 2009 Oct; 22(8):795-808. PubMed ID: 19412933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous 3D-TOF angiography and 4D-flow MRI with enhanced flow signal using multiple overlapping thin slab acquisition and magnetization transfer.
    Kim D; Eisenmenger L; Turski P; Johnson KM
    Magn Reson Med; 2022 Mar; 87(3):1401-1417. PubMed ID: 34708445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional time-of-flight (3D TOF) magnetic resonance angiography (MRA) and contrast-enhanced MRA of intracranial aneurysms treated with platinum coils.
    Wikström J; Ronne-Engström E; Gal G; Enblad P; Tovi M
    Acta Radiol; 2008 Mar; 49(2):190-6. PubMed ID: 18300146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Hemodynamic Visualization in Cerebral Arteries: Can Magnetic Resonance Imaging Replace Computational Fluid Dynamics?
    Ngo MT; Lee UY; Ha H; Jin N; Chung GH; Kwak YG; Jung J; Kwak HS
    J Pers Med; 2021 Mar; 11(4):. PubMed ID: 33808514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segmentation of intracranial vessels and aneurysms in phase contrast magnetic resonance angiography using multirange filters and local variances.
    Law MW; Chung AC
    IEEE Trans Image Process; 2013 Mar; 22(3):845-59. PubMed ID: 22955902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noninvasive imaging after stent-assisted coiling of intracranial aneurysms: comparison of 3-T magnetic resonance imaging and 64-row multidetector computed tomography--a pilot study.
    Kovács A; Möhlenbruch M; Hadizadeh DR; Seifert M; Greschus S; Clusmann H; Willinek WA; Flacke S; Urbach H
    J Comput Assist Tomogr; 2011; 35(5):573-82. PubMed ID: 21926852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of 3D TOF MR angiographic accuracy in predicting Raymond grade of flow-diverted versus coiled intracranial aneurysms.
    Binyamin TR; Dahlin BC; Waldau B
    J Clin Neurosci; 2017 Aug; 42():182-185. PubMed ID: 28457861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesizing 4D Magnetic Resonance Angiography From 3D Time-of-Flight Using Deep Learning: A Feasibility Study.
    Wada A; Akatsu T; Ikenouchi Y; Suzuki M; Akashi T; Hagiwara A; Nishizawa M; Sano K; Kamagata K; Aoki S
    Cureus; 2024 May; 16(5):e60803. PubMed ID: 38910733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebral blood flow in a healthy Circle of Willis and two intracranial aneurysms: computational fluid dynamics versus four-dimensional phase-contrast magnetic resonance imaging.
    Berg P; Stucht D; Janiga G; Beuing O; Speck O; Thévenin D
    J Biomech Eng; 2014 Apr; 136(4):. PubMed ID: 24292415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implant-specific follow-up imaging of treated intracranial aneurysms: TOF-MRA vs. metal artifact reduced intravenous flat panel computed tomography angiography (FPCTA).
    Hänsel NH; Schubert GA; Scholz B; Nikoubashman O; Othman AE; Wiesmann M; Pjontek R; Brockmann MA
    Clin Radiol; 2018 Feb; 73(2):218.e9-218.e15. PubMed ID: 28811040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Merging computational fluid dynamics and 4D Flow MRI using proper orthogonal decomposition and ridge regression.
    Bakhshinejad A; Baghaie A; Vali A; Saloner D; Rayz VL; D'Souza RM
    J Biomech; 2017 Jun; 58():162-173. PubMed ID: 28577904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic imaging of a model of intracranial saccular aneurysms using ultra-high-resolution flat-panel volumetric computed tomography. Laboratory investigation.
    Mitha AP; Reichardt B; Grasruck M; Macklin E; Bartling S; Leidecker C; Schmidt B; Flohr T; Brady TJ; Ogilvy CS; Gupta R
    J Neurosurg; 2009 Nov; 111(5):947-57. PubMed ID: 19374491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3 T contrast-enhanced magnetic resonance angiography for evaluation of the intracranial arteries: comparison with time-of-flight magnetic resonance angiography and multislice computed tomography angiography.
    Villablanca JP; Nael K; Habibi R; Nael A; Laub G; Finn JP
    Invest Radiol; 2006 Nov; 41(11):799-805. PubMed ID: 17035870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.