These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 29929283)

  • 1. Process of CH
    Zhang F; Song Z; Zhu J; Liu L; Sun J; Zhao X; Mao Y; Wang W
    Sci Total Environ; 2018 Oct; 639():1148-1155. PubMed ID: 29929283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fe-rich biomass derived char for microwave-assisted methane reforming with carbon dioxide.
    Li L; Yan K; Chen J; Feng T; Wang F; Wang J; Song Z; Ma C
    Sci Total Environ; 2019 Mar; 657():1357-1367. PubMed ID: 30677902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sonochemically preparation and characterization of bimetallic Ni-Co/Al
    Mahboob S; Haghighi M; Rahmani F
    Ultrason Sonochem; 2017 Sep; 38():38-49. PubMed ID: 28633838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic performance of activated carbon supported cobalt catalyst for CO2 reforming of CH4.
    Zhang G; Su A; Du Y; Qu J; Xu Y
    J Colloid Interface Sci; 2014 Nov; 433():149-155. PubMed ID: 25127295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developing descriptors for CO
    Ray K; Bhardwaj R; Singh B; Deo G
    Phys Chem Chem Phys; 2018 Jun; 20(23):15939-15950. PubMed ID: 29850682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier's principle.
    Buelens LC; Galvita VV; Poelman H; Detavernier C; Marin GB
    Science; 2016 Oct; 354(6311):449-452. PubMed ID: 27738013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave Heating-Assisted Catalytic Dry Reforming of Methane to Syngas.
    Hamzehlouia S; Jaffer SA; Chaouki J
    Sci Rep; 2018 Jun; 8(1):8940. PubMed ID: 29895961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effect of Fe in Perovskite Catalysts for Steam CO2 Reforming of Methane.
    Yang EH; Noh YS; Lim SS; Ahn BS; Moon DJ
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1938-41. PubMed ID: 27433705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Ca Promoter on the Structure, Performance, and Carbon Deposition of Ni-Al
    Wang H; Mo W; He X; Fan X; Ma F; Liu S; Tax D
    ACS Omega; 2020 Nov; 5(45):28955-28964. PubMed ID: 33225125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis.
    Shi L; Yang G; Tao K; Yoneyama Y; Tan Y; Tsubaki N
    Acc Chem Res; 2013 Aug; 46(8):1838-47. PubMed ID: 23459583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Coke-Resistance Pt/Mg1-xNixO Catalyst for Dry Reforming of Methane.
    Al-Doghachi FA; Islam A; Zainal Z; Saiman MI; Embong Z; Taufiq-Yap YH
    PLoS One; 2016; 11(1):e0145862. PubMed ID: 26745623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dry Reforming of Methane in a Gliding Arc Plasmatron: Towards a Better Understanding of the Plasma Chemistry.
    Cleiren E; Heijkers S; Ramakers M; Bogaerts A
    ChemSusChem; 2017 Oct; 10(20):4025-4036. PubMed ID: 28834403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic reforming of palm kernel shell microwave pyrolysis vapors over iron-loaded activated carbon: Enhanced production of phenol and hydrogen.
    An Y; Tahmasebi A; Zhao X; Matamba T; Yu J
    Bioresour Technol; 2020 Jun; 306():123111. PubMed ID: 32203900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion mechanism of thermal plasma-enhanced CH
    Zhou Y; Chu R; Fan L; Zhao J; Li W; Jiang X; Meng X; Li Y; Yu S; Wan Y
    Sci Total Environ; 2023 Mar; 866():161453. PubMed ID: 36626987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen Production from Ethanol Reforming by a Microwave Discharge Using Air as a Working Gas.
    Guo W; Zheng X; Qin Z; Guo Q; Liu L
    ACS Omega; 2021 Dec; 6(49):33533-33541. PubMed ID: 34926902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave-enhanced CO2 gasification of oil palm shell char.
    Lahijani P; Zainal ZA; Mohamed AR; Mohammadi M
    Bioresour Technol; 2014 Apr; 158():193-200. PubMed ID: 24607454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium-looping reforming of methane realizes in situ CO
    Tian S; Yan F; Zhang Z; Jiang J
    Sci Adv; 2019 Apr; 5(4):eaav5077. PubMed ID: 30993203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasound assisted co-precipitation synthesis and catalytic performance of mesoporous nanocrystalline NiO-Al
    Rahbar Shamskar F; Meshkani F; Rezaei M
    Ultrason Sonochem; 2017 Jan; 34():436-447. PubMed ID: 27773266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dry reforming of methane over palladium-platinum on carbon nanotube catalyst.
    Zhu Y; Chen K; Yi C; Mitra S; Barat R
    Chem Eng Commun; 2018; 205(7):888-896. PubMed ID: 30573930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microcalorimetric and infrared studies of ethanol and acetaldehyde adsorption to investigate the ethanol steam reforming on supported cobalt catalysts.
    Guil JM; Homs N; Llorca J; Ramírez de la Piscina P
    J Phys Chem B; 2005 Jun; 109(21):10813-9. PubMed ID: 16852315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.