These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 29929283)
21. Modified Nano-Perovskite Catalysts for the Steam and CO2 Reforming of Methane. Park D; Moon DJ; Bae JW; Kim T J Nanosci Nanotechnol; 2015 Aug; 15(8):5889-92. PubMed ID: 26369166 [TBL] [Abstract][Full Text] [Related]
22. Plasma-chemical promotion of catalysis for CH Sheng Z; Kim HH; Yao S; Nozaki T Phys Chem Chem Phys; 2020 Sep; 22(34):19349-19358. PubMed ID: 32822443 [TBL] [Abstract][Full Text] [Related]
23. Preparation and Performance Validation of Nano-Perovskite Type for Carbon Dioxide Reforming of Methane. Kim T; Park D J Nanosci Nanotechnol; 2018 Feb; 18(2):1259-1262. PubMed ID: 29448569 [TBL] [Abstract][Full Text] [Related]
24. Highly efficient electrochemical reforming of CH Lu J; Zhu C; Pan C; Lin W; Lemmon JP; Chen F; Li C; Xie K Sci Adv; 2018 Mar; 4(3):eaar5100. PubMed ID: 29670946 [TBL] [Abstract][Full Text] [Related]
25. Cooperativity and Dynamics Increase the Performance of NiFe Dry Reforming Catalysts. Kim SM; Abdala PM; Margossian T; Hosseini D; Foppa L; Armutlulu A; van Beek W; Comas-Vives A; Copéret C; Müller C J Am Chem Soc; 2017 Feb; 139(5):1937-1949. PubMed ID: 28068106 [TBL] [Abstract][Full Text] [Related]
26. Conversion of Carbon Dioxide by Methane Reforming under Visible-Light Irradiation: Surface-Plasmon-Mediated Nonpolar Molecule Activation. Liu H; Meng X; Dao TD; Zhang H; Li P; Chang K; Wang T; Li M; Nagao T; Ye J Angew Chem Int Ed Engl; 2015 Sep; 54(39):11545-9. PubMed ID: 26271348 [TBL] [Abstract][Full Text] [Related]
27. Synergistic effects of plasma-catalyst interactions for CH Kim J; Go DB; Hicks JC Phys Chem Chem Phys; 2017 May; 19(20):13010-13021. PubMed ID: 28480933 [TBL] [Abstract][Full Text] [Related]
28. Sono-synthesis and characterization of bimetallic Ni-Co/Al2O3-MgO nanocatalyst: Effects of metal content on catalytic properties and activity for hydrogen production via CO2 reforming of CH4. Abdollahifar M; Haghighi M; Babaluo AA; Talkhoncheh SK Ultrason Sonochem; 2016 Jul; 31():173-83. PubMed ID: 26964938 [TBL] [Abstract][Full Text] [Related]
29. One-Step Reforming of CO Wang L; Yi Y; Wu C; Guo H; Tu X Angew Chem Int Ed Engl; 2017 Oct; 56(44):13679-13683. PubMed ID: 28842938 [TBL] [Abstract][Full Text] [Related]
30. Rapid degradation of malachite green by CoFe Mao Y; Yang S; Xue C; Zhang M; Wang W; Song Z; Zhao X; Sun J R Soc Open Sci; 2018 Jun; 5(6):180085. PubMed ID: 30110488 [TBL] [Abstract][Full Text] [Related]
31. Optical and Mass Spectrometric Measurements of the CH Li H; Zhou Y; Donnelly VM J Phys Chem A; 2020 Sep; 124(36):7271-7282. PubMed ID: 32791834 [TBL] [Abstract][Full Text] [Related]
32. C-O bond activation and splitting behaviours of CO Wang D; Zhang L; Han D; Niu L; Zhong X; Qu X; Yang L; Zhao J; Li H Phys Chem Chem Phys; 2018 Oct; 20(42):26846-26852. PubMed ID: 30328854 [TBL] [Abstract][Full Text] [Related]
33. Catalytic Activity of Various Carbons during the Microwave-Initiated Deep Dehydrogenation of Hexadecane. Jie X; Wang J; Gonzalez-Cortes S; Yao B; Li W; Gao Y; Dilworth JR; Xiao T; Edwards PP JACS Au; 2021 Nov; 1(11):2021-2032. PubMed ID: 34841415 [TBL] [Abstract][Full Text] [Related]
34. Highly efficient degradation of 4-nitrophenol over the catalyst of Mn2O3/AC by microwave catalytic oxidation degradation method. Yin C; Cai J; Gao L; Yin J; Zhou J J Hazard Mater; 2016 Mar; 305():15-20. PubMed ID: 26642442 [TBL] [Abstract][Full Text] [Related]
35. Mechanism of CO Wang Y; Gao H J Phys Chem B; 2017 May; 121(20):5238-5246. PubMed ID: 28463005 [TBL] [Abstract][Full Text] [Related]
36. Woody biomass and RPF gasification using reforming catalyst and calcium oxide. Kobayashi J; Kawamoto K; Fukushima R; Tanaka S Chemosphere; 2011 May; 83(9):1273-8. PubMed ID: 21459406 [TBL] [Abstract][Full Text] [Related]
37. Sono-sulfated zirconia nanocatalyst supported on MCM-41 for biodiesel production from sunflower oil: Influence of ultrasound irradiation power on catalytic properties and performance. Dehghani S; Haghighi M Ultrason Sonochem; 2017 Mar; 35(Pt A):142-151. PubMed ID: 27650807 [TBL] [Abstract][Full Text] [Related]
38. Recovery of rare metal compounds from nickel-metal hydride battery waste and their application to CH4 dry reforming catalyst. Kanamori T; Matsuda M; Miyake M J Hazard Mater; 2009 Sep; 169(1-3):240-5. PubMed ID: 19395161 [TBL] [Abstract][Full Text] [Related]
39. Mechanistic Insights into Catalytic Ethanol Steam Reforming Using Isotope-Labeled Reactants. Crowley S; Castaldi MJ Angew Chem Int Ed Engl; 2016 Aug; 55(36):10650-5. PubMed ID: 27487203 [TBL] [Abstract][Full Text] [Related]
40. CO2 reforming of CH4 on Ni(111): a density functional theory calculation. Wang SG; Cao DB; Li YW; Wang J; Jiao H J Phys Chem B; 2006 May; 110(20):9976-83. PubMed ID: 16706455 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]