These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 29929287)

  • 1. Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing.
    Flexer V; Baspineiro CF; Galli CI
    Sci Total Environ; 2018 Oct; 639():1188-1204. PubMed ID: 29929287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of a double-slope solar still for the concentration of lithium rich brines with concomitant fresh water recovery.
    Baspineiro CF; Franco J; Flexer V
    Sci Total Environ; 2021 Oct; 791():148192. PubMed ID: 34119795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrodialysis for the Concentration of Lithium-Containing Brines-An Investigation on the Applicability.
    Rögener F; Tetampel L
    Membranes (Basel); 2022 Nov; 12(11):. PubMed ID: 36422134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical Methods for Lithium Recovery: A Comprehensive and Critical Review.
    Battistel A; Palagonia MS; Brogioli D; La Mantia F; Trócoli R
    Adv Mater; 2020 Jun; 32(23):e1905440. PubMed ID: 32307755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential water recovery during lithium mining from high salinity brines.
    Baspineiro CF; Franco J; Flexer V
    Sci Total Environ; 2020 Jun; 720():137523. PubMed ID: 32143040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane electrolysis for the removal of Mg
    Díaz Nieto CH; Palacios NA; Verbeeck K; Prévoteau A; Rabaey K; Flexer V
    Water Res; 2019 May; 154():117-124. PubMed ID: 30782553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electro-Driven Materials and Processes for Lithium Recovery-A Review.
    Siekierka A; Bryjak M; Razmjou A; Kujawski W; Nikoloski AN; Dumée LF
    Membranes (Basel); 2022 Mar; 12(3):. PubMed ID: 35323818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Globally sustainable manganese metal production and use.
    Hagelstein K
    J Environ Manage; 2009 Sep; 90(12):3736-40. PubMed ID: 19467569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lithium Harvesting from the Most Abundant Primary and Secondary Sources: A Comparative Study on Conventional and Membrane Technologies.
    Butt FS; Lewis A; Chen T; Mazlan NA; Wei X; Hayer J; Chen S; Han J; Yang Y; Yang S; Huang Y
    Membranes (Basel); 2022 Mar; 12(4):. PubMed ID: 35448344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The economic potential of metalliferous sub-volcanic brines.
    Blundy J; Afanasyev A; Tattitch B; Sparks S; Melnik O; Utkin I; Rust A
    R Soc Open Sci; 2021 Jun; 8(6):202192. PubMed ID: 34234951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Commentary health risks from climate fix: The downside of energy storage batteries.
    Gottesfeld P
    Environ Res; 2019 Nov; 178():108677. PubMed ID: 31450149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery of Lithium from Geothermal Brine with Lithium-Aluminum Layered Double Hydroxide Chloride Sorbents.
    Paranthaman MP; Li L; Luo J; Hoke T; Ucar H; Moyer BA; Harrison S
    Environ Sci Technol; 2017 Nov; 51(22):13481-13486. PubMed ID: 29076733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lithium isotope geochemistry and origin of Canadian shield brines.
    Bottomley DJ; Chan LH; Katz A; Starinsky A; Clark ID
    Ground Water; 2003; 41(6):847-56. PubMed ID: 14649868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The development of a new type of rechargeable batteries based on hybrid electrolytes.
    Zhou H; Wang Y; Li H; He P
    ChemSusChem; 2010 Sep; 3(9):1009-19. PubMed ID: 20677207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly selective lithium recovery from brine using a λ-MnO2-Ag battery.
    Lee J; Yu SH; Kim C; Sung YE; Yoon J
    Phys Chem Chem Phys; 2013 May; 15(20):7690-5. PubMed ID: 23595419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lithium Separation from Geothermal Brine to Develop Critical Energy Resources Using High-Pressure Nanofiltration Technology: Characterization and Optimization.
    Sutijan S; Darma SA; Hananto CM; Sujoto VSH; Anggara F; Jenie SNA; Astuti W; Mufakhir FR; Virdian S; Utama AP; Petrus HTBM
    Membranes (Basel); 2023 Jan; 13(1):. PubMed ID: 36676893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New data regarding the identification of critical raw materials recoverable from raw, processed and the waste mining industry materials from Romania.
    Radu VM; Dinca G; Ivanov AA; Szabo R; Cetean VM
    Environ Sci Pollut Res Int; 2024 Jun; 31(28):40592-40608. PubMed ID: 36991209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comprehensive Membrane Process for Preparing Lithium Carbonate from High Mg/Li Brine.
    Xu W; Liu D; He L; Zhao Z
    Membranes (Basel); 2020 Nov; 10(12):. PubMed ID: 33256217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lithium recovery using electrochemical technologies: Advances and challenges.
    Wu L; Zhang C; Kim S; Hatton TA; Mo H; Waite TD
    Water Res; 2022 Aug; 221():118822. PubMed ID: 35834973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.
    Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA
    Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.