These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 29929287)

  • 21. Selectivity of a lithium-recovery process based on LiFePO4.
    Trócoli R; Battistel A; Mantia FL
    Chemistry; 2014 Aug; 20(32):9888-91. PubMed ID: 25043970
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Battery technologies for large-scale stationary energy storage.
    Soloveichik GL
    Annu Rev Chem Biomol Eng; 2011; 2():503-27. PubMed ID: 22432629
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microbial diversity of the hypersaline and lithium-rich Salar de Uyuni, Bolivia.
    Haferburg G; Gröning JAD; Schmidt N; Kummer NA; Erquicia JC; Schlömann M
    Microbiol Res; 2017 Jun; 199():19-28. PubMed ID: 28454706
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recovery of Critical Metals from Aqueous Sources.
    Can Sener SE; Thomas VM; Hogan DE; Maier RM; Carbajales-Dale M; Barton MD; Karanfil T; Crittenden JC; Amy GL
    ACS Sustain Chem Eng; 2021 Sep; 9(35):11616-11634. PubMed ID: 34777924
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Towards greener and more sustainable batteries for electrical energy storage.
    Larcher D; Tarascon JM
    Nat Chem; 2015 Jan; 7(1):19-29. PubMed ID: 25515886
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lithium recovery from salt-lake brine: Impact of competing cations, pretreatment and preconcentration.
    Pramanik BK; Asif MB; Roychand R; Shu L; Jegatheesan V; Bhuiyan M; Hai FI
    Chemosphere; 2020 Dec; 260():127623. PubMed ID: 32668363
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Quantitative Metric for the Design of Selective Supercritical CO
    Ruttinger AW; Pálsdóttir A; Tester JW; Clancy P
    ChemSusChem; 2019 Aug; 12(15):3532-3540. PubMed ID: 31251455
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phytoremediation: a novel approach for utilization of iron-ore wastes.
    Mohanty M; Dhal NK; Patra P; Das B; Reddy PS
    Rev Environ Contam Toxicol; 2010; 206():29-47. PubMed ID: 20652667
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Ionophore for High Lithium Loading and Selective Capture from Brine.
    Gohil H; Chatterjee S; Yadav S; Suresh E; Paital AR
    Inorg Chem; 2019 Jun; 58(11):7209-7219. PubMed ID: 31091090
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A review on cellulose and lignin based binders and electrodes: Small steps towards a sustainable lithium ion battery.
    Nirmale TC; Kale BB; Varma AJ
    Int J Biol Macromol; 2017 Oct; 103():1032-1043. PubMed ID: 28554795
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent Advances in the Lithium Recovery from Water Resources: From Passive to Electrochemical Methods.
    Baudino L; Santos C; Pirri CF; La Mantia F; Lamberti A
    Adv Sci (Weinh); 2022 Sep; 9(27):e2201380. PubMed ID: 35896956
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hierarchically structured materials for lithium batteries.
    Xiao J; Zheng J; Li X; Shao Y; Zhang JG
    Nanotechnology; 2013 Oct; 24(42):424004. PubMed ID: 24067410
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ESCAPE approach for the sustainability evaluation of spent lithium-ion batteries recovery: Dataset of 33 available technologies.
    Ducoli S; Fahimi A; Mousa E; Ye G; Federici S; Frontera P; Bontempi E
    Data Brief; 2022 Jun; 42():108018. PubMed ID: 35313497
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of a Process for Producing Battery Grade Lithium Hydroxide by Membrane Electrodialysis.
    Grageda M; Gonzalez A; Quispe A; Ushak S
    Membranes (Basel); 2020 Aug; 10(9):. PubMed ID: 32854211
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Environmentally-friendly lithium recycling from a spent organic li-ion battery.
    Renault S; Brandell D; Edström K
    ChemSusChem; 2014 Oct; 7(10):2859-67. PubMed ID: 25170568
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Re-using bauxite residues: benefits beyond (critical raw) material recovery.
    Ujaczki É; Feigl V; Molnár M; Cusack P; Curtin T; Courtney R; O'Donoghue L; Davris P; Hugi C; Evangelou MW; Balomenos E; Lenz M
    J Chem Technol Biotechnol; 2018 Sep; 93(9):2498-2510. PubMed ID: 30158737
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly Selective and Pollution-Free Electrochemical Extraction of Lithium by a Polyaniline/Li
    Zhao A; Liu J; Ai X; Yang H; Cao Y
    ChemSusChem; 2019 Apr; 12(7):1361-1367. PubMed ID: 30694613
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sustainable governance of scarce metals: the case of lithium.
    Prior T; Wäger PA; Stamp A; Widmer R; Giurco D
    Sci Total Environ; 2013 Sep; 461-462():785-91. PubMed ID: 23768895
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nickel hexacyanoferrate as suitable alternative to Ag for electrochemical lithium recovery.
    Trócoli R; Battistel A; La Mantia F
    ChemSusChem; 2015 Aug; 8(15):2514-9. PubMed ID: 26138094
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Groundwater in sedimentary basins as potential lithium resource: a global prospective study.
    Dugamin EJM; Richard A; Cathelineau M; Boiron MC; Despinois F; Brisset A
    Sci Rep; 2021 Oct; 11(1):21091. PubMed ID: 34702944
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.