These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 29929553)

  • 21. Musashi-1 is the candidate of the regulator of hair cell progenitors during inner ear regeneration.
    Wakasaki T; Niiro H; Jabbarzadeh-Tabrizi S; Ohashi M; Kimitsuki T; Nakagawa T; Komune S; Akashi K
    BMC Neurosci; 2017 Aug; 18(1):64. PubMed ID: 28814279
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression of the transcription factors GATA3 and Pax2 during development of the mammalian inner ear.
    Lawoko-Kerali G; Rivolta MN; Holley M
    J Comp Neurol; 2002 Jan; 442(4):378-91. PubMed ID: 11793341
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mouse models for deafness: lessons for the human inner ear and hearing loss.
    Avraham KB
    Ear Hear; 2003 Aug; 24(4):332-41. PubMed ID: 12923424
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Notch Signalling: The Multitask Manager of Inner Ear Development and Regeneration.
    Daudet N; Żak M
    Adv Exp Med Biol; 2020; 1218():129-157. PubMed ID: 32060875
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of supporting cell phenotype in the avian inner ear: implications for sensory regeneration.
    Warchol ME
    Hear Res; 2007 May; 227(1-2):11-8. PubMed ID: 17081713
    [TBL] [Abstract][Full Text] [Related]  

  • 26. From gene identification to gene therapy.
    Kanzaki S; Kawamoto K; Oh SH; Stöver T; Suzuki M; Ishimoto S; Yagi M; Miller JM; Lomax MI; Raphael Y
    Audiol Neurootol; 2002; 7(3):161-4. PubMed ID: 12053138
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A spontaneous mouse deletion in Mctp1 uncovers a long-range cis-regulatory region crucial for NR2F1 function during inner ear development.
    Tarchini B; Longo-Guess C; Tian C; Tadenev ALD; Devanney N; Johnson KR
    Dev Biol; 2018 Nov; 443(2):153-164. PubMed ID: 30217595
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Age-related transcriptome changes in Sox2+ supporting cells in the mouse cochlea.
    Cheng C; Wang Y; Guo L; Lu X; Zhu W; Muhammad W; Zhang L; Lu L; Gao J; Tang M; Chen F; Gao X; Li H; Chai R
    Stem Cell Res Ther; 2019 Dec; 10(1):365. PubMed ID: 31791390
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An RNA interference-based screen of transcription factor genes identifies pathways necessary for sensory regeneration in the avian inner ear.
    Alvarado DM; Hawkins RD; Bashiardes S; Veile RA; Ku YC; Powder KE; Spriggs MK; Speck JD; Warchol ME; Lovett M
    J Neurosci; 2011 Mar; 31(12):4535-43. PubMed ID: 21430154
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of Lgr5+ progenitor cell transcriptomes in the apical and basal turns of the mouse cochlea.
    Waqas M; Guo L; Zhang S; Chen Y; Zhang X; Wang L; Tang M; Shi H; Bird PI; Li H; Chai R
    Oncotarget; 2016 Jul; 7(27):41123-41141. PubMed ID: 27070092
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development and regeneration of the inner ear.
    Kwan T; White PM; Segil N
    Ann N Y Acad Sci; 2009 Jul; 1170():28-33. PubMed ID: 19686102
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MicroRNAs in inner ear biology and pathogenesis.
    Patel M; Hu BH
    Hear Res; 2012 May; 287(1-2):6-14. PubMed ID: 22484222
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inner ear proteomics of mouse models for deafness, a discovery strategy.
    Zheng QY; Rozanas CR; Thalmann I; Chance MR; Alagramam KN
    Brain Res; 2006 May; 1091(1):113-21. PubMed ID: 16600193
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anti-apoptotic factor z-Val-Ala-Asp-fluoromethylketone promotes the survival of cochlear hair cells in a mouse model for human deafness.
    Atar O; Avraham KB
    Neuroscience; 2010 Jul; 168(3):851-7. PubMed ID: 20394804
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MicroRNA gene expression in the mouse inner ear.
    Weston MD; Pierce ML; Rocha-Sanchez S; Beisel KW; Soukup GA
    Brain Res; 2006 Sep; 1111(1):95-104. PubMed ID: 16904081
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcriptional response to Wnt activation regulates the regenerative capacity of the mammalian cochlea.
    Samarajeewa A; Lenz DR; Xie L; Chiang H; Kirchner R; Mulvaney JF; Edge ASB; Dabdoub A
    Development; 2018 Nov; 145(23):. PubMed ID: 30389848
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Eya2 expression during mouse embryonic development revealed by Eya2
    Zhang T; Xu J; Xu PX
    Dev Dyn; 2021 Oct; 250(10):1450-1462. PubMed ID: 33715274
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of Adeno-Associated Viral Vectors That Target Neonatal and Adult Mammalian Inner Ear Cell Subtypes.
    Shu Y; Tao Y; Wang Z; Tang Y; Li H; Dai P; Gao G; Chen ZY
    Hum Gene Ther; 2016 Sep; 27(9):687-99. PubMed ID: 27342665
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prox1 interacts with Atoh1 and Gfi1, and regulates cellular differentiation in the inner ear sensory epithelia.
    Kirjavainen A; Sulg M; Heyd F; Alitalo K; Ylä-Herttuala S; Möröy T; Petrova TV; Pirvola U
    Dev Biol; 2008 Oct; 322(1):33-45. PubMed ID: 18652815
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regeneration and replacement in the vertebrate inner ear.
    Matsui JI; Parker MA; Ryals BM; Cotanche DA
    Drug Discov Today; 2005 Oct; 10(19):1307-12. PubMed ID: 16214675
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.