BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 29930383)

  • 1. Comprehensive in-silico prediction of damage associated SNPs in Human Prolidase gene.
    Bhatnager R; Dang AS
    Sci Rep; 2018 Jun; 8(1):9430. PubMed ID: 29930383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of functional SNPs in BARD1 gene and in silico analysis of damaging SNPs: based on data procured from dbSNP database.
    Alshatwi AA; Hasan TN; Syed NA; Shafi G; Grace BL
    PLoS One; 2012; 7(10):e43939. PubMed ID: 23056176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of structurally and functionally high-risk nsSNPs impacts on human bone morphogenetic protein receptor type IA (BMPR1A) by computational approach.
    Islam MJ; Parves MR; Mahmud S; Tithi FA; Reza MA
    Comput Biol Chem; 2019 Jun; 80():31-45. PubMed ID: 30884445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Silico Analysis of Coding/Noncoding SNPs of Human
    Elkhattabi L; Morjane I; Charoute H; Amghar S; Bouafi H; Elkarhat Z; Saile R; Rouba H; Barakat A
    J Diabetes Res; 2019; 2019():4951627. PubMed ID: 31236417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic and structural evidences on human prolidase pathological mutants suggest strategies for enzyme functional rescue.
    Besio R; Gioia R; Cossu F; Monzani E; Nicolis S; Cucca L; Profumo A; Casella L; Tenni R; Bolognesi M; Rossi A; Forlino A
    PLoS One; 2013; 8(3):e58792. PubMed ID: 23516557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico analysis of non-synonymous single nucleotide polymorphisms in human DAZL gene associated with male infertility.
    Nailwal M; Chauhan JB
    Syst Biol Reprod Med; 2017 Aug; 63(4):248-258. PubMed ID: 28388287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-Silico Computing of the Most Deleterious nsSNPs in HBA1 Gene.
    AbdulAzeez S; Borgio JF
    PLoS One; 2016; 11(1):e0147702. PubMed ID: 26824843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-Silico Analyses of Nonsynonymous Variants in the BRCA1 Gene.
    Arshad S; Ishaque I; Mumtaz S; Rashid MU; Malkani N
    Biochem Genet; 2021 Dec; 59(6):1506-1526. PubMed ID: 33945048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening and insilico analysis of deleterious nsSNPs (missense) in human CSF3 for their effects on protein structure, stability and function.
    Guttula PK; Chandrasekaran G; Gupta MK
    Comput Biol Chem; 2019 Oct; 82():57-64. PubMed ID: 31272062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Analysis of Damaging Single-Nucleotide Polymorphisms and Their Structural and Functional Impact on the Insulin Receptor.
    Mahmud Z; Malik SU; Ahmed J; Azad AK
    Biomed Res Int; 2016; 2016():2023803. PubMed ID: 27840822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico analysis of single nucleotide polymorphism (SNP) in human TNF-α gene.
    Dabhi B; Mistry KN
    Meta Gene; 2014 Dec; 2():586-95. PubMed ID: 25606441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure analysis of deleterious nsSNPs in human PALB2 protein for functional inference.
    Nawar N; Paul A; Mahmood HN; Faisal MI; Hosen MI; Shekhar HU
    Bioinformation; 2021; 17(3):424-438. PubMed ID: 34092963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for prolidase deficiency disease mechanisms.
    Wilk P; Uehlein M; Piwowarczyk R; Dobbek H; Mueller U; Weiss MS
    FEBS J; 2018 Sep; 285(18):3422-3441. PubMed ID: 30066404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human prolidase and prolidase deficiency: an overview on the characterization of the enzyme involved in proline recycling and on the effects of its mutations.
    Lupi A; Tenni R; Rossi A; Cetta G; Forlino A
    Amino Acids; 2008 Nov; 35(4):739-52. PubMed ID: 18340504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Deleterious SNPs and Their Effects on Structural Level in CHRNA3 Gene.
    Chandramohan V; Nagaraju N; Rathod S; Kaphle A; Muddapur U
    Biochem Genet; 2015 Aug; 53(7-8):159-68. PubMed ID: 26002565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico comprehensive analysis of coding and non-coding SNPs in human mTOR protein.
    Yasmin T
    PLoS One; 2022; 17(7):e0270919. PubMed ID: 35788771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural location of disease-associated single-nucleotide polymorphisms.
    Stitziel NO; Tseng YY; Pervouchine D; Goddeau D; Kasif S; Liang J
    J Mol Biol; 2003 Apr; 327(5):1021-30. PubMed ID: 12662927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive Characterization of the Coding and Non-Coding Single Nucleotide Polymorphisms in the Tumor Protein p63 (TP63) Gene Using In Silico Tools.
    Akter S; Hossain S; Ali MA; Hosen MI; Shekhar HU
    Biomolecules; 2021 Nov; 11(11):. PubMed ID: 34827731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Hydrolysis of Organophosphorus Compounds by Engineered Human Prolidases.
    Yun H; Lee S; Kim S; Yu J; Lee N; Lee J; Kim ND; Yu C; Rho J
    Protein Pept Lett; 2017; 24(7):617-625. PubMed ID: 28462712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A bioinformatics approach for the phenotype prediction of nonsynonymous single nucleotide polymorphisms in human cytochromes P450.
    Wang LL; Li Y; Zhou SF
    Drug Metab Dispos; 2009 May; 37(5):977-91. PubMed ID: 19204079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.