These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 29930504)

  • 21. Moving a hand-held object: Reconstruction of referent coordinate and apparent stiffness trajectories.
    Ambike S; Zhou T; Zatsiorsky VM; Latash ML
    Neuroscience; 2015 Jul; 298():336-56. PubMed ID: 25896800
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impaired coordination between grip force and load force in amyotrophic lateral sclerosis: a case-control study.
    Nowak DA; Hermsdörfer J
    Amyotroph Lateral Scler Other Motor Neuron Disord; 2002 Dec; 3(4):199-207. PubMed ID: 12710509
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Moving weightless objects. Grip force control during microgravity.
    Hermsdörfer J; Marquardt C; Philipp J; Zierdt A; Nowak D; Glasauer S; Mai N
    Exp Brain Res; 2000 May; 132(1):52-64. PubMed ID: 10836635
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Moving objects with clumsy fingers: how predictive is grip force control in patients with impaired manual sensibility?
    Nowak DA; Hermsdörfer J; Marquardt C; Topka H
    Clin Neurophysiol; 2003 Mar; 114(3):472-87. PubMed ID: 12705428
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Somatosensory control of precision grip during unpredictable pulling loads. III. Impairments during digital anesthesia.
    Johansson RS; Hger C; Bäckström L
    Exp Brain Res; 1992; 89(1):204-13. PubMed ID: 1601098
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Somatosensory control of precision grip during unpredictable pulling loads. II. Changes in load force rate.
    Johansson RS; Häger C; Riso R
    Exp Brain Res; 1992; 89(1):192-203. PubMed ID: 1601097
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influences of load characteristics on impaired control of grip forces in patients with cerebellar damage.
    Brandauer B; Timmann D; Häusler A; Hermsdörfer J
    J Neurophysiol; 2010 Feb; 103(2):698-708. PubMed ID: 19955288
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantifying feedforward control: a linear scaling model for fingertip forces and object weight.
    Lu Y; Bilaloglu S; Aluru V; Raghavan P
    J Neurophysiol; 2015 Jul; 114(1):411-8. PubMed ID: 25878151
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Grip-force responses to unanticipated object loading: load direction reveals body- and gravity-referenced intrinsic task variables.
    Häger-Ross C; Cole KJ; Johansson RS
    Exp Brain Res; 1996 Jun; 110(1):142-50. PubMed ID: 8817265
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The impact of unilateral brain damage on anticipatory grip force scaling when lifting everyday objects.
    Eidenmüller S; Randerath J; Goldenberg G; Li Y; Hermsdörfer J
    Neuropsychologia; 2014 Aug; 61():222-34. PubMed ID: 24978304
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bimanual organization of manipulative forces: evidence from erroneous feedforward programming of precision grip.
    Serrien DJ; Wiesendanger M
    Eur J Neurosci; 2001 May; 13(9):1825-32. PubMed ID: 11359534
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Key Insights into Hand Biomechanics: Human Grip Stiffness Can Be Decoupled from Force by Cocontraction and Predicted from Electromyography.
    Höppner H; Große-Dunker M; Stillfried G; Bayer J; van der Smagt P
    Front Neurorobot; 2017; 11():17. PubMed ID: 28588472
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Grip force control during object manipulation in cerebral stroke.
    Hermsdörfer J; Hagl E; Nowak DA; Marquardt C
    Clin Neurophysiol; 2003 May; 114(5):915-29. PubMed ID: 12738439
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control of Precision Grip Force in Lifting and Holding of Low-Mass Objects.
    Hiramatsu Y; Kimura D; Kadota K; Ito T; Kinoshita H
    PLoS One; 2015; 10(9):e0138506. PubMed ID: 26376484
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of human precision grip. I: Basic coordination of force.
    Forssberg H; Eliasson AC; Kinoshita H; Johansson RS; Westling G
    Exp Brain Res; 1991; 85(2):451-7. PubMed ID: 1893993
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid Visuomotor Corrective Responses during Transport of Hand-Held Objects Incorporate Novel Object Dynamics.
    Diamond JS; Nashed JY; Johansson RS; Wolpert DM; Flanagan JR
    J Neurosci; 2015 Jul; 35(29):10572-80. PubMed ID: 26203151
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Real-time slacking as a default mode of grip force control: implications for force minimization and personal grip force variation.
    Smith BW; Rowe JB; Reinkensmeyer DJ
    J Neurophysiol; 2018 Oct; 120(4):2107-2120. PubMed ID: 30089024
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coupling of grip force and load force during arm movements with grasped objects.
    Flanagan JR; Tresilian J; Wing AM
    Neurosci Lett; 1993 Apr; 152(1-2):53-6. PubMed ID: 8515879
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip.
    Johansson RS; Westling G
    Exp Brain Res; 1988; 71(1):59-71. PubMed ID: 3416958
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Extraction of time and frequency features from grip force rates during dexterous manipulation.
    Mojtahedi K; Fu Q; Santello M
    IEEE Trans Biomed Eng; 2015 May; 62(5):1363-75. PubMed ID: 25576561
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.