BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 29930566)

  • 1. Fertilization Changes Chemical Defense in Needles of Mature Norway Spruce (
    Nybakken L; Lie MH; Julkunen-Tiitto R; Asplund J; Ohlson M
    Front Plant Sci; 2018; 9():770. PubMed ID: 29930566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spruce-fir forest changes during a 30-year nitrogen saturation experiment.
    McNulty SG; Boggs JL; Aber JD; Rustad LE
    Sci Total Environ; 2017 Dec; 605-606():376-390. PubMed ID: 28668749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elevated nutrient supply can exert worse effects on Norway spruce than drought, viewed through chemical defence against needle rust.
    Ganthaler A; Guggenberger A; Stöggl W; Kranner I; Mayr S
    Tree Physiol; 2023 Oct; 43(10):1745-1757. PubMed ID: 37405989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic responses of Norway spruce (Picea abies) trees to long-term forest management practices and acute (NH
    Weber P; Stoermer H; GEßLER A; Schneider S; VON Sengbusch D; Hanemann U; Rennenberg H
    New Phytol; 1998 Nov; 140(3):461-475. PubMed ID: 33862871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The spread of Kalmia angustifolia on black spruce forest cutovers contributes to the spatial heterogeneity of soil resources.
    Joanisse GD; Bradley RL; Preston CM
    PLoS One; 2018; 13(6):e0198860. PubMed ID: 29927964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined effect of elevated UVB, elevated temperature and fertilization on growth, needle structure and phytochemistry of young Norway spruce (Picea abies) seedlings.
    Virjamo V; Sutinen S; Julkunen-Tiitto R
    Glob Chang Biol; 2014 Jul; 20(7):2252-60. PubMed ID: 24804850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Foliar Phenolic Compounds in Norway Spruce with Varying Susceptibility to
    Ganthaler A; Stöggl W; Kranner I; Mayr S
    Front Plant Sci; 2017; 8():1173. PubMed ID: 28713417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon, water and nitrogen relations in evergreen and deciduous conifers.
    Matyssek R
    Tree Physiol; 1986 Dec; 2(1_2_3):177-187. PubMed ID: 14975852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genotypic Tannin Levels in Populus tremula Impact the Way Nitrogen Enrichment Affects Growth and Allocation Responses for Some Traits and Not for Others.
    Bandau F; Decker VH; Gundale MJ; Albrectsen BR
    PLoS One; 2015; 10(10):e0140971. PubMed ID: 26488414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induced accumulation of phenolics and sawfly performance in Scots pine in response to previous defoliation.
    Roitto M; Rautio P; Markkola A; Julkunen-Tiitto R; Varama M; Saravesi K; Tuomi J
    Tree Physiol; 2009 Feb; 29(2):207-16. PubMed ID: 19203946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany.
    Vitali V; Büntgen U; Bauhus J
    Glob Chang Biol; 2017 Dec; 23(12):5108-5119. PubMed ID: 28556403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histology of magnesium-deficient Norway spruce needles influenced by nitrogen source.
    Puech L; Mehne-Jakobs B
    Tree Physiol; 1997 May; 17(5):301-10. PubMed ID: 14759853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opposing effects of elevated CO
    Hättenschwiler S; Schafellner C
    Oecologia; 1999 Feb; 118(2):210-217. PubMed ID: 28307696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of soil pyrene contamination on growth and phenolics in Norway spruce (Picea abies) are modified by elevated temperature and CO
    Zhang Y; Virjamo V; Du W; Yin Y; Nissinen K; Nybakken L; Guo H; Julkunen-Tiitto R
    Environ Sci Pollut Res Int; 2018 May; 25(13):12788-12799. PubMed ID: 29473139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating the uptake of traffic-derived NO
    Ammann M; Siegwolf R; Pichlmayer F; Suter M; Saurer M; Brunold C
    Oecologia; 1999 Feb; 118(2):124-131. PubMed ID: 28307686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altitudinal differences in the leaf fitness of juvenile and mature alpine spruce trees (Picea crassifolia).
    Zhao C; Chen L; Ma F; Yao B; Liu J
    Tree Physiol; 2008 Jan; 28(1):133-41. PubMed ID: 17938122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The evaluation of hazardous element content in the needles of the Norway spruce (Picea abies L.) that originated from anthropogenic activities in the vicinity of the native habitats.
    Popović V; Šešlija Jovanović D; Miletić Z; Milovanović J; Lučić A; Rakonjac L; Miljković D
    Environ Monit Assess; 2022 Nov; 195(1):109. PubMed ID: 36376774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth of mature boreal Norway spruce was not affected by elevated [CO(2)] and/or air temperature unless nutrient availability was improved.
    Sigurdsson BD; Medhurst JL; Wallin G; Eggertsson O; Linder S
    Tree Physiol; 2013 Nov; 33(11):1192-205. PubMed ID: 23878169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nutrient contents and concentrations in relation to growth of Picea abies and Fagus sylvatica along a European transect.
    Bauer G; Schulze ED; Mund M
    Tree Physiol; 1997 Dec; 17(12):777-86. PubMed ID: 14759887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tree- and needle-age-dependent variations in antioxidants and photoprotective pigments in Norway spruce needles at the alpine timberline.
    Tegischer K; Tausz M; Wieser G; Grill D
    Tree Physiol; 2002 Jun; 22(8):591-6. PubMed ID: 12045031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.