These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 29930705)
1. Insight into the functional roles of Glu175 in the hyperthermostable xylanase XYL10C-ΔN through structural analysis and site-saturation mutagenesis. You S; Chen CC; Tu T; Wang X; Ma R; Cai HY; Guo RT; Luo HY; Yao B Biotechnol Biofuels; 2018; 11():159. PubMed ID: 29930705 [TBL] [Abstract][Full Text] [Related]
2. Improvement of XYL10C_∆N catalytic performance through loop engineering for lignocellulosic biomass utilization in feed and fuel industries. You S; Zha Z; Li J; Zhang W; Bai Z; Hu Y; Wang X; Chen Y; Chen Z; Wang J; Luo H Biotechnol Biofuels; 2021 Oct; 14(1):195. PubMed ID: 34598723 [TBL] [Abstract][Full Text] [Related]
3. Improvement in catalytic activity and thermostability of a GH10 xylanase and its synergistic degradation of biomass with cellulase. You S; Xie C; Ma R; Huang HQ; Herman RA; Su XY; Ge Y; Cai HY; Yao B; Wang J; Luo HY Biotechnol Biofuels; 2019; 12():278. PubMed ID: 31827606 [TBL] [Abstract][Full Text] [Related]
4. A novel thermostable GH10 xylanase with activities on a wide variety of cellulosic substrates from a xylanolytic Wang K; Cao R; Wang M; Lin Q; Zhan R; Xu H; Wang S Biotechnol Biofuels; 2019; 12():48. PubMed ID: 30899328 [TBL] [Abstract][Full Text] [Related]
5. Significantly improving the thermostability of a hyperthermophilic GH10 family xylanase XynAF1 by semi-rational design. Li G; Zhou X; Li Z; Liu Y; Liu D; Miao Y; Wan Q; Zhang R Appl Microbiol Biotechnol; 2021 Jun; 105(11):4561-4576. PubMed ID: 34014347 [TBL] [Abstract][Full Text] [Related]
6. In planta production and characterization of a hyperthermostable GH10 xylanase in transgenic sugarcane. Kim JY; Nong G; Rice JD; Gallo M; Preston JF; Altpeter F Plant Mol Biol; 2017 Mar; 93(4-5):465-478. PubMed ID: 28005227 [TBL] [Abstract][Full Text] [Related]
7. Clustered surface amino acid residues modulate the acid stability of GH10 xylanase in fungi. Xia Y; Wang W; Wei Y; Guo C; Song S; Cai S; Miao Y Appl Microbiol Biotechnol; 2024 Feb; 108(1):216. PubMed ID: 38363378 [TBL] [Abstract][Full Text] [Related]
8. Improvement of the catalytic performance of a hyperthermostable GH10 xylanase from Talaromyces leycettanus JCM12802. Wang X; Huang H; Xie X; Ma R; Bai Y; Zheng F; You S; Zhang B; Xie H; Yao B; Luo H Bioresour Technol; 2016 Dec; 222():277-284. PubMed ID: 27723474 [TBL] [Abstract][Full Text] [Related]
9. Lowering energy consumption for fermentable sugar production from Ramulus mori: Engineered xylanase synergy and improved pretreatment strategy. You S; Zhang YX; Shi F; Zhang WX; Li J; Zhang S; Chen ZL; Zhao WG; Wang J Bioresour Technol; 2022 Jan; 344(Pt B):126368. PubMed ID: 34808317 [TBL] [Abstract][Full Text] [Related]
10. Effect of CBM1 and linker region on enzymatic properties of a novel thermostable dimeric GH10 xylanase (Xyn10A) from filamentous fungus Aspergillus fumigatus Z5. Miao Y; Kong Y; Li P; Li G; Liu D; Shen Q; Zhang R AMB Express; 2018 Mar; 8(1):44. PubMed ID: 29564574 [TBL] [Abstract][Full Text] [Related]
11. Improvement of alkalophilicity of an alkaline xylanase Xyn11A-LC from Bacillus sp. SN5 by random mutation and Glu135 saturation mutagenesis. Bai W; Cao Y; Liu J; Wang Q; Jia Z BMC Biotechnol; 2016 Nov; 16(1):77. PubMed ID: 27825339 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the Wild-Type and Truncated Forms of a Neutral GH10 Xylanase from Hu H; Chen K; Li L; Long L; Ding S J Microbiol Biotechnol; 2017 Apr; 27(4):775-784. PubMed ID: 28173691 [TBL] [Abstract][Full Text] [Related]
13. Improvement of the catalytic efficiency of a hyperthermophilic xylanase from Bispora sp. MEY-1. Wang X; Zheng F; Wang Y; Tu T; Ma R; Su X; You S; Yao B; Xie X; Luo H PLoS One; 2017; 12(12):e0189806. PubMed ID: 29253895 [TBL] [Abstract][Full Text] [Related]
14. Loop engineering of a thermostable GH10 xylanase to improve low-temperature catalytic performance for better synergistic biomass-degrading abilities. You S; Li J; Zhang F; Bai ZY; Shittu S; Herman RA; Zhang WX; Wang J Bioresour Technol; 2021 Dec; 342():125962. PubMed ID: 34563821 [TBL] [Abstract][Full Text] [Related]
15. The family 22 carbohydrate-binding module of bifunctional xylanase/β-glucanase Xyn10E from Paenibacillus curdlanolyticus B-6 has an important role in lignocellulose degradation. Sermsathanaswadi J; Baramee S; Tachaapaikoon C; Pason P; Ratanakhanokchai K; Kosugi A Enzyme Microb Technol; 2017 Jan; 96():75-84. PubMed ID: 27871388 [TBL] [Abstract][Full Text] [Related]
16. Improving the thermostability and catalytic efficiency of GH11 xylanase PjxA by adding disulfide bridges. Teng C; Jiang Y; Xu Y; Li Q; Li X; Fan G; Xiong K; Yang R; Zhang C; Ma R; Zhu Y; Li J; Wang C Int J Biol Macromol; 2019 May; 128():354-362. PubMed ID: 30682487 [TBL] [Abstract][Full Text] [Related]
17. Highly Thermostable Xylanase Production from A Thermophilic Geobacillus sp. Strain WSUCF1 Utilizing Lignocellulosic Biomass. Bhalla A; Bischoff KM; Sani RK Front Bioeng Biotechnol; 2015; 3():84. PubMed ID: 26137456 [TBL] [Abstract][Full Text] [Related]
18. A thermostable and CBM2-linked GH10 xylanase from Wu X; Shi Z; Tian W; Liu M; Huang S; Liu X; Yin H; Wang L Front Bioeng Biotechnol; 2022; 10():939550. PubMed ID: 36091429 [TBL] [Abstract][Full Text] [Related]
19. Improvement of GH10 family xylanase thermostability by introducing of an extra α-helix at the C-terminal. Li G; Chen X; Zhou X; Huang R; Li L; Miao Y; Liu D; Zhang R Biochem Biophys Res Commun; 2019 Jul; 515(3):417-422. PubMed ID: 31160089 [TBL] [Abstract][Full Text] [Related]
20. A thermophilic and acid stable family-10 xylanase from the acidophilic fungus Bispora sp. MEY-1. Luo H; Li J; Yang J; Wang H; Yang Y; Huang H; Shi P; Yuan T; Fan Y; Yao B Extremophiles; 2009 Sep; 13(5):849-57. PubMed ID: 19655217 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]