BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 29930981)

  • 1. Cysteine Protease-Mediated Autocleavage of
    Zhang Y; Li S; Yang Z; Shi L; Yu H; Salerno-Goncalves R; Saint Fleur A; Feng H
    Cell Mol Gastroenterol Hepatol; 2018; 5(4):611-625. PubMed ID: 29930981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Masking autoprocessing of Clostridium difficile toxin A by the C-terminus combined repetitive oligo peptides.
    Zhang Y; Hamza T; Gao S; Feng H
    Biochem Biophys Res Commun; 2015 Apr; 459(2):259-263. PubMed ID: 25725153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytotoxicity of Clostridium difficile toxin B does not require cysteine protease-mediated autocleavage and release of the glucosyltransferase domain into the host cell cytosol.
    Li S; Shi L; Yang Z; Feng H
    Pathog Dis; 2013 Feb; 67(1):11-8. PubMed ID: 23620115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrarectal instillation of Clostridium difficile toxin A triggers colonic inflammation and tissue damage: development of a novel and efficient mouse model of Clostridium difficile toxin exposure.
    Hirota SA; Iablokov V; Tulk SE; Schenck LP; Becker H; Nguyen J; Al Bashir S; Dingle TC; Laing A; Liu J; Li Y; Bolstad J; Mulvey GL; Armstrong GD; MacNaughton WK; Muruve DA; MacDonald JA; Beck PL
    Infect Immun; 2012 Dec; 80(12):4474-84. PubMed ID: 23045481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A segment of 97 amino acids within the translocation domain of Clostridium difficile toxin B is essential for toxicity.
    Zhang Y; Shi L; Li S; Yang Z; Standley C; Yang Z; ZhuGe R; Savidge T; Wang X; Feng H
    PLoS One; 2013; 8(3):e58634. PubMed ID: 23484044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clostridium difficile chimeric toxin receptor binding domain vaccine induced protection against different strains in active and passive challenge models.
    Tian JH; Glenn G; Flyer D; Zhou B; Liu Y; Sullivan E; Wu H; Cummings JF; Elllingsworth L; Smith G
    Vaccine; 2017 Jul; 35(33):4079-4087. PubMed ID: 28669616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clostridium difficile Toxin B causes epithelial cell necrosis through an autoprocessing-independent mechanism.
    Chumbler NM; Farrow MA; Lapierre LA; Franklin JL; Haslam DB; Goldenring JR; Lacy DB
    PLoS Pathog; 2012; 8(12):e1003072. PubMed ID: 23236283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical roles of Clostridium difficile toxin B enzymatic activities in pathogenesis.
    Li S; Shi L; Yang Z; Zhang Y; Perez-Cordon G; Huang T; Ramsey J; Oezguen N; Savidge TC; Feng H
    Infect Immun; 2015 Feb; 83(2):502-13. PubMed ID: 25404023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High temporal resolution of glucosyltransferase dependent and independent effects of Clostridium difficile toxins across multiple cell types.
    D'Auria KM; Bloom MJ; Reyes Y; Gray MC; van Opstal EJ; Papin JA; Hewlett EL
    BMC Microbiol; 2015 Feb; 15(1):7. PubMed ID: 25648517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the frequency of Clostridium difficile tcdA, tcdB, cdtA and cdtB genes in feces of Calves in south west of Iran.
    Doosti A; Mokhtari-Farsani A
    Ann Clin Microbiol Antimicrob; 2014 Jun; 13():21. PubMed ID: 24903619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of purified Clostridium difficile glucosylating toxins in disease pathogenesis utilizing a murine cecum injection model.
    Zhang Y; Yang Z; Gao S; Hamza T; Yfantis HG; Lipsky M; Feng H
    Anaerobe; 2017 Dec; 48():249-256. PubMed ID: 29031928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and characterization of phage display-derived anti-toxin antibodies neutralizing TcdA and TcdB of
    Raeisi H; Azimirad M; Asadzadeh Aghdaei H; Zarnani AH; Abdolalizadeh J; Yadegar A; Zali MR
    Microbiol Spectr; 2023 Sep; 11(5):e0531022. PubMed ID: 37668373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The enterotoxicity of Clostridium difficile toxins.
    Sun X; Savidge T; Feng H
    Toxins (Basel); 2010 Jul; 2(7):1848-80. PubMed ID: 22069662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of an Essential Region for Translocation of Clostridium difficile Toxin B.
    Chen S; Wang H; Gu H; Sun C; Li S; Feng H; Wang J
    Toxins (Basel); 2016 Aug; 8(8):. PubMed ID: 27537911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clostridium difficile Toxin Biology.
    Aktories K; Schwan C; Jank T
    Annu Rev Microbiol; 2017 Sep; 71():281-307. PubMed ID: 28657883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an Effective Nontoxigenic Clostridioides difficile-Based Oral Vaccine against C. difficile Infection.
    Wang S; Zhu D; Sun X
    Microbiol Spectr; 2022 Jun; 10(3):e0026322. PubMed ID: 35583336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A chimeric toxin vaccine protects against primary and recurrent Clostridium difficile infection.
    Wang H; Sun X; Zhang Y; Li S; Chen K; Shi L; Nie W; Kumar R; Tzipori S; Wang J; Savidge T; Feng H
    Infect Immun; 2012 Aug; 80(8):2678-88. PubMed ID: 22615245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A DNA vaccine targeting TcdA and TcdB induces protective immunity against Clostridium difficile.
    Zhang BZ; Cai J; Yu B; Hua Y; Lau CC; Kao RY; Sze KH; Yuen KY; Huang JD
    BMC Infect Dis; 2016 Oct; 16(1):596. PubMed ID: 27770789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adenosine receptors differentially mediate enteric glial cell death induced by
    Costa DVS; Shin JH; Goldbeck SM; Bolick DT; Mesquita FS; Loureiro AV; Rodrigues-Jesus MJ; Brito GAC; Warren CA
    Front Immunol; 2022; 13():956326. PubMed ID: 36726986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of
    Chumbler NM; Rutherford SA; Zhang Z; Farrow MA; Lisher JP; Farquhar E; Giedroc DP; Spiller BW; Melnyk RA; Lacy DB
    Nat Microbiol; 2016; 1():. PubMed ID: 27512603
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.