BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 29931044)

  • 1. Using tree-based methods for detection of gene-gene interactions in the presence of a polygenic signal: simulation study with application to educational attainment in the Generation Scotland Cohort Study.
    Meijsen JJ; Rammos A; Campbell A; Hayward C; Porteous DJ; Deary IJ; Marioni RE; Nicodemus KK
    Bioinformatics; 2019 Jan; 35(2):181-188. PubMed ID: 29931044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EpiGEN: an epistasis simulation pipeline.
    Blumenthal DB; Viola L; List M; Baumbach J; Tieri P; Kacprowski T
    Bioinformatics; 2020 Dec; 36(19):4957-4959. PubMed ID: 32289146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of methods for detecting interacting loci.
    Chen L; Yu G; Langefeld CD; Miller DJ; Guy RT; Raghuram J; Yuan X; Herrington DM; Wang Y
    BMC Genomics; 2011 Jul; 12():344. PubMed ID: 21729295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PRSice: Polygenic Risk Score software.
    Euesden J; Lewis CM; O'Reilly PF
    Bioinformatics; 2015 May; 31(9):1466-8. PubMed ID: 25550326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bootstrap aggregating of alternating decision trees to detect sets of SNPs that associate with disease.
    Guy RT; Santago P; Langefeld CD
    Genet Epidemiol; 2012 Feb; 36(2):99-106. PubMed ID: 22851473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid epistatic mixed-model association studies by controlling multiple polygenic effects.
    Wang D; Tang H; Liu JF; Xu S; Zhang Q; Ning C
    Bioinformatics; 2020 Dec; 36(19):4833-4837. PubMed ID: 32614415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput analysis of epistasis in genome-wide association studies with BiForce.
    Gyenesei A; Moody J; Semple CA; Haley CS; Wei WH
    Bioinformatics; 2012 Aug; 28(15):1957-64. PubMed ID: 22618535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases.
    Carmelo VAO; Kogelman LJA; Madsen MB; Kadarmideen HN
    BMC Bioinformatics; 2018 Jul; 19(1):277. PubMed ID: 30064383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Confounding of linkage disequilibrium patterns in large scale DNA based gene-gene interaction studies.
    Joiret M; Mahachie John JM; Gusareva ES; Van Steen K
    BioData Min; 2019; 12():11. PubMed ID: 31198442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the ability of tree-based methods and logistic regression for the detection of SNP-SNP interaction.
    García-Magariños M; López-de-Ullibarri I; Cao R; Salas A
    Ann Hum Genet; 2009 May; 73(Pt 3):360-9. PubMed ID: 19291098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EINVis: a visualization tool for analyzing and exploring genetic interactions in large-scale association studies.
    Wu Y; Zhu X; Chen J; Zhang X
    Genet Epidemiol; 2013 Nov; 37(7):675-85. PubMed ID: 23934759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imperfect Linkage Disequilibrium Generates Phantom Epistasis (& Perils of Big Data).
    de Los Campos G; Sorensen DA; Toro MA
    G3 (Bethesda); 2019 May; 9(5):1429-1436. PubMed ID: 30877081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model-Based Multifactor Dimensionality Reduction to detect epistasis for quantitative traits in the presence of error-free and noisy data.
    Mahachie John JM; Van Lishout F; Van Steen K
    Eur J Hum Genet; 2011 Jun; 19(6):696-703. PubMed ID: 21407267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection and replication of epistasis influencing transcription in humans.
    Hemani G; Shakhbazov K; Westra HJ; Esko T; Henders AK; McRae AF; Yang J; Gibson G; Martin NG; Metspalu A; Franke L; Montgomery GW; Visscher PM; Powell JE
    Nature; 2014 Apr; 508(7495):249-53. PubMed ID: 24572353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selecting SNPs for association studies based on population frequencies: a novel interactive tool and its application to polygenic diseases.
    Möller S; Koczan D; Serrano-Fernandez P; Zettl UK; Thiesen HJ; Ibrahim SM
    In Silico Biol; 2004; 4(4):417-27. PubMed ID: 15506992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. sim1000G: a user-friendly genetic variant simulator in R for unrelated individuals and family-based designs.
    Dimitromanolakis A; Xu J; Krol A; Briollais L
    BMC Bioinformatics; 2019 Jan; 20(1):26. PubMed ID: 30646839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interacting haplotypes at the NPAS3 locus alter risk of schizophrenia and bipolar disorder.
    Pickard BS; Christoforou A; Thomson PA; Fawkes A; Evans KL; Morris SW; Porteous DJ; Blackwood DH; Muir WJ
    Mol Psychiatry; 2009 Sep; 14(9):874-84. PubMed ID: 18317462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide epistatic expression quantitative trait loci discovery in four human tissues reveals the importance of local chromosomal interactions governing gene expression.
    Fitzpatrick DJ; Ryan CJ; Shah N; Greene D; Molony C; Shields DC
    BMC Genomics; 2015 Feb; 16(1):109. PubMed ID: 25765234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TWAS pathway method greatly enhances the number of leads for uncovering the molecular underpinnings of psychiatric disorders.
    Chatzinakos C; Georgiadis F; Lee D; Cai N; Vladimirov VI; Docherty A; Webb BT; Riley BP; Flint J; Kendler KS; Daskalakis NP; Bacanu SA
    Am J Med Genet B Neuropsychiatr Genet; 2020 Dec; 183(8):454-463. PubMed ID: 32954640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional regression method for whole genome eQTL epistasis analysis with sequencing data.
    Xu K; Jin L; Xiong M
    BMC Genomics; 2017 May; 18(1):385. PubMed ID: 28521784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.