BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 29931069)

  • 1. Rates and Patterns of Mutation in Tandem Repetitive DNA in Six Independent Lineages of Chlamydomonas reinhardtii.
    Flynn JM; Lower SE; Barbash DA; Clark AG
    Genome Biol Evol; 2018 Jul; 10(7):1673-1686. PubMed ID: 29931069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selection Constrains High Rates of Tandem Repetitive DNA Mutation in
    Flynn JM; Caldas I; Cristescu ME; Clark AG
    Genetics; 2017 Oct; 207(2):697-710. PubMed ID: 28811387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterns of tandem repetition in plant whole genome assemblies.
    Navajas-Pérez R; Paterson AH
    Mol Genet Genomics; 2009 Jun; 281(6):579-90. PubMed ID: 19242726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extensive de novo mutation rate variation between individuals and across the genome of Chlamydomonas reinhardtii.
    Ness RW; Morgan AD; Vasanthakrishnan RB; Colegrave N; Keightley PD
    Genome Res; 2015 Nov; 25(11):1739-49. PubMed ID: 26260971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De Novo Mutation Rate Variation and Its Determinants in Chlamydomonas.
    López-Cortegano E; Craig RJ; Chebib J; Samuels T; Morgan AD; Kraemer SA; Böndel KB; Ness RW; Colegrave N; Keightley PD
    Mol Biol Evol; 2021 Aug; 38(9):3709-3723. PubMed ID: 33950243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two copies of a DNA element, 'Wendy', in the chloroplast chromosome of Chlamydomonas reinhardtii between rearranged gene clusters.
    Fan WH; Woelfle MA; Mosig G
    Plant Mol Biol; 1995 Oct; 29(1):63-80. PubMed ID: 7579168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extensive gene rearrangements in the chloroplast DNAs of Chlamydomonas species featuring multiple dispersed repeats.
    Boudreau E; Turmel M
    Mol Biol Evol; 1996 Jan; 13(1):233-43. PubMed ID: 8583896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Estimate of the Spontaneous Mutation Rate Uncovers the Effects of Drift and Recombination in the Chlamydomonas reinhardtii Plastid Genome.
    Ness RW; Kraemer SA; Colegrave N; Keightley PD
    Mol Biol Evol; 2016 Mar; 33(3):800-8. PubMed ID: 26615203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous mutation accumulation in multiple strains of the green alga, Chlamydomonas reinhardtii.
    Morgan AD; Ness RW; Keightley PD; Colegrave N
    Evolution; 2014 Sep; 68(9):2589-602. PubMed ID: 24826801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Architecture and evolution of subtelomeres in the unicellular green alga Chlamydomonas reinhardtii.
    Chaux-Jukic F; O'Donnell S; Craig RJ; Eberhard S; Vallon O; Xu Z
    Nucleic Acids Res; 2021 Jul; 49(13):7571-7587. PubMed ID: 34165564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large arrays of tandemly repeated DNA sequences in the green alga Chlamydomonas reinhardtii.
    Hails T; Jobling M; Day A
    Chromosoma; 1993 Jul; 102(7):500-7. PubMed ID: 8397077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimate of the spontaneous mutation rate in Chlamydomonas reinhardtii.
    Ness RW; Morgan AD; Colegrave N; Keightley PD
    Genetics; 2012 Dec; 192(4):1447-54. PubMed ID: 23051642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput sequencing of the chloroplast and mitochondrion of Chlamydomonas reinhardtii to generate improved de novo assemblies, analyze expression patterns and transcript speciation, and evaluate diversity among laboratory strains and wild isolates.
    Gallaher SD; Fitz-Gibbon ST; Strenkert D; Purvine SO; Pellegrini M; Merchant SS
    Plant J; 2018 Feb; 93(3):545-565. PubMed ID: 29172250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intraspecific Variation in Microsatellite Mutation Profiles in Daphnia magna.
    Ho EKH; Macrae F; Latta LC; Benner MJ; Sun C; Ebert D; Schaack S
    Mol Biol Evol; 2019 Sep; 36(9):1942-1954. PubMed ID: 31077327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local repeat sequence organization of an intergenic spacer in the chloroplast genome of Chlamydomonas reinhardtii leads to DNA expansion and sequence scrambling: a complex mode of "copy-choice replication"?
    Wagle MD; Sen S; Rao BJ
    J Biosci; 2001 Dec; 26(5):583-94. PubMed ID: 11807289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variable (CA/GT)n simple sequence repeat DNA in the alga Chlamydomonas.
    Kang TJ; Fawley MW
    Plant Mol Biol; 1997 Dec; 35(6):943-8. PubMed ID: 9426612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic abundance is not predictive of tandem repeat localization in grass genomes.
    Bilinski P; Han Y; Hufford MB; Lorant A; Zhang P; Estep MC; Jiang J; Ross-Ibarra J
    PLoS One; 2017; 12(6):e0177896. PubMed ID: 28570674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fitness change in relation to mutation number in spontaneous mutation accumulation lines of Chlamydomonas reinhardtii.
    Kraemer SA; Böndel KB; Ness RW; Keightley PD; Colegrave N
    Evolution; 2017 Dec; 71(12):2918-2929. PubMed ID: 28884790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The chloroplast genome sequence of the green alga Pseudendoclonium akinetum (Ulvophyceae) reveals unusual structural features and new insights into the branching order of chlorophyte lineages.
    Pombert JF; Otis C; Lemieux C; Turmel M
    Mol Biol Evol; 2005 Sep; 22(9):1903-18. PubMed ID: 15930151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative genomics of Chlamydomonas.
    Craig RJ; Hasan AR; Ness RW; Keightley PD
    Plant Cell; 2021 May; 33(4):1016-1041. PubMed ID: 33793842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.