BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 29931098)

  • 1. panISa: ab initio detection of insertion sequences in bacterial genomes from short read sequence data.
    Treepong P; Guyeux C; Meunier A; Couchoud C; Hocquet D; Valot B
    Bioinformatics; 2018 Nov; 34(22):3795-3800. PubMed ID: 29931098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deciphering the role of insertion sequences in the evolution of bacterial epidemic pathogens with
    Couchoud C; Bertrand X; Valot B; Hocquet D
    Microb Genom; 2020 Jun; 6(6):. PubMed ID: 32213253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ISEScan: automated identification of insertion sequence elements in prokaryotic genomes.
    Xie Z; Tang H
    Bioinformatics; 2017 Nov; 33(21):3340-3347. PubMed ID: 29077810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ISQuest: finding insertion sequences in prokaryotic sequence fragment data.
    Biswas A; Gauthier DT; Ranjan D; Zubair M
    Bioinformatics; 2015 Nov; 31(21):3406-12. PubMed ID: 26116929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ISMapper: identifying transposase insertion sites in bacterial genomes from short read sequence data.
    Hawkey J; Hamidian M; Wick RR; Edwards DJ; Billman-Jacobe H; Hall RM; Holt KE
    BMC Genomics; 2015 Sep; 16(1):667. PubMed ID: 26336060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NextPolish: a fast and efficient genome polishing tool for long-read assembly.
    Hu J; Fan J; Sun Z; Liu S
    Bioinformatics; 2020 Apr; 36(7):2253-2255. PubMed ID: 31778144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. T-lex3: an accurate tool to genotype and estimate population frequencies of transposable elements using the latest short-read whole genome sequencing data.
    Bogaerts-Márquez M; Barrón MG; Fiston-Lavier AS; Vendrell-Mir P; Castanera R; Casacuberta JM; González J
    Bioinformatics; 2020 Feb; 36(4):1191-1197. PubMed ID: 31580402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SVIM: structural variant identification using mapped long reads.
    Heller D; Vingron M
    Bioinformatics; 2019 Sep; 35(17):2907-2915. PubMed ID: 30668829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CROSSMAPPER: estimating cross-mapping rates and optimizing experimental design in multi-species sequencing studies.
    Hovhannisyan H; Hafez A; Llorens C; Gabaldón T
    Bioinformatics; 2020 Feb; 36(3):925-927. PubMed ID: 31392323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TrEMOLO: accurate transposable element allele frequency estimation using long-read sequencing data combining assembly and mapping-based approaches.
    Mohamed M; Sabot F; Varoqui M; Mugat B; Audouin K; Pélisson A; Fiston-Lavier AS; Chambeyron S
    Genome Biol; 2023 Apr; 24(1):63. PubMed ID: 37013657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. McClintock: An Integrated Pipeline for Detecting Transposable Element Insertions in Whole-Genome Shotgun Sequencing Data.
    Nelson MG; Linheiro RS; Bergman CM
    G3 (Bethesda); 2017 Aug; 7(8):2763-2778. PubMed ID: 28637810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. rMETL: sensitive mobile element insertion detection with long read realignment.
    Jiang T; Liu B; Li J; Wang Y
    Bioinformatics; 2019 Sep; 35(18):3484-3486. PubMed ID: 30759188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A benchmark and an algorithm for detecting germline transposon insertions and measuring de novo transposon insertion frequencies.
    Yu T; Huang X; Dou S; Tang X; Luo S; Theurkauf WE; Lu J; Weng Z
    Nucleic Acids Res; 2021 May; 49(8):e44. PubMed ID: 33511407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BleTIES: annotation of natural genome editing in ciliates using long read sequencing.
    Seah BKB; Swart EC
    Bioinformatics; 2021 Nov; 37(21):3929-3931. PubMed ID: 34487139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RepLong: de novo repeat identification using long read sequencing data.
    Guo R; Li YR; He S; Ou-Yang L; Sun Y; Zhu Z
    Bioinformatics; 2018 Apr; 34(7):1099-1107. PubMed ID: 29126180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MsPAC: a tool for haplotype-phased structural variant detection.
    Rodriguez OL; Ritz A; Sharp AJ; Bashir A
    Bioinformatics; 2020 Feb; 36(3):922-924. PubMed ID: 31397844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. gplas: a comprehensive tool for plasmid analysis using short-read graphs.
    Arredondo-Alonso S; Bootsma M; Hein Y; Rogers MRC; Corander J; Willems RJL; Schürch AC
    Bioinformatics; 2020 Jun; 36(12):3874-3876. PubMed ID: 32271863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SASpector: analysis of missing genomic regions in draft genomes of prokaryotes.
    Lood C; Correa Rojo A; Sinar D; Verkinderen E; Lavigne R; Noort VV
    Bioinformatics; 2022 May; 38(10):2920-2921. PubMed ID: 35561201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numt identification and removal with RtN!
    Woerner AE; Cihlar JC; Smart U; Budowle B
    Bioinformatics; 2020 Dec; 36(20):5115-5116. PubMed ID: 32706871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PRAP: an ab initio software package for automated genome-wide analysis of DNA repeats for prokaryotes.
    Chen GL; Chang YJ; Hsueh CH
    Bioinformatics; 2013 Nov; 29(21):2683-9. PubMed ID: 23958725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.