These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 29932053)

  • 21. High-Thermal- and Air-Stability Cathode Material with Concentration-Gradient Buffer for Li-Ion Batteries.
    Shi JL; Qi R; Zhang XD; Wang PF; Fu WG; Yin YX; Xu J; Wan LJ; Guo YG
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):42829-42835. PubMed ID: 29148695
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolution of strategies for modern rechargeable batteries.
    Goodenough JB
    Acc Chem Res; 2013 May; 46(5):1053-61. PubMed ID: 22746097
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A review on cathode materials for advanced lithium ion batteries: microstructure designs and performance regulations.
    Chen Z; Zhang W; Yang Z
    Nanotechnology; 2020 Jan; 31(1):012001. PubMed ID: 31519017
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Na-rich layered Na
    Song S; Kotobuki M; Chen Y; Manzhos S; Xu C; Hu N; Lu L
    Sci Rep; 2017 Mar; 7(1):373. PubMed ID: 28336964
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pseudocapacitance-Enhanced Storage Kinetics of 3D Anhydrous Iron (III) Fluoride as a Cathode for Li/Na-Ion Batteries.
    Zhang T; Liu Y; Chen G; Liu H; Han Y; Zhai S; Zhang L; Pan Y; Li Q; Li Q
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432326
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.
    Yu SH; Feng X; Zhang N; Seok J; Abruña HD
    Acc Chem Res; 2018 Feb; 51(2):273-281. PubMed ID: 29373023
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Free-standing and flexible organic cathode based on aromatic carbonyl compound/carbon nanotube composite for lithium and sodium organic batteries.
    Yuan C; Wu Q; Shao Q; Li Q; Gao B; Duan Q; Wang HG
    J Colloid Interface Sci; 2018 May; 517():72-79. PubMed ID: 29421682
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Promising Cathode Materials for Sodium-Ion Batteries from Lab to Application.
    Xu S; Dong H; Yang D; Wu C; Yao Y; Rui X; Chou S; Yu Y
    ACS Cent Sci; 2023 Nov; 9(11):2012-2035. PubMed ID: 38033793
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Challenges and Strategies toward Cathode Materials for Rechargeable Potassium-Ion Batteries.
    Liu S; Kang L; Jun SC
    Adv Mater; 2021 Nov; 33(47):e2004689. PubMed ID: 33448099
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Perspectives on Li and transition metal fluoride phosphates as cathode materials for a new generation of Li-ion batteries.
    Antipov EV; Khasanova NR; Fedotov SS
    IUCrJ; 2015 Jan; 2(Pt 1):85-94. PubMed ID: 25610630
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Progress on Fe-Based Polyanionic Oxide Cathodes Materials toward Grid-Scale Energy Storage for Sodium-Ion Batteries.
    Yang W; Liu Q; Zhao Y; Mu D; Tan G; Gao H; Li L; Chen R; Wu F
    Small Methods; 2022 Sep; 6(9):e2200555. PubMed ID: 35780504
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dispersion-Assembly Approach to Synthesize Three-Dimensional Graphene/Polymer Composite Aerogel as a Powerful Organic Cathode for Rechargeable Li and Na Batteries.
    Zhang Y; Huang Y; Yang G; Bu F; Li K; Shakir I; Xu Y
    ACS Appl Mater Interfaces; 2017 May; 9(18):15549-15556. PubMed ID: 28425698
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural Instability Driven by Li/Na Competition in Na(Li
    Perez AJ; Rousse G; Tarascon JM
    Inorg Chem; 2019 Nov; 58(22):15644-15651. PubMed ID: 31697483
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Overcoming Kinetic Limitations of Polyanionic Cathode toward High-Performance Na-Ion Batteries.
    Xu C; Fu Q; Hua W; Chen Z; Zhang Q; Bai Y; Yang C; Zhao J; Hu YS
    ACS Nano; 2024 Jul; 18(28):18758-18768. PubMed ID: 38965054
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An oxalate cathode for lithium ion batteries with combined cationic and polyanionic redox.
    Yao W; Armstrong AR; Zhou X; Sougrati MT; Kidkhunthod P; Tunmee S; Sun C; Sattayaporn S; Lightfoot P; Ji B; Jiang C; Wu N; Tang Y; Cheng HM
    Nat Commun; 2019 Aug; 10(1):3483. PubMed ID: 31375663
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stabilization of Multicationic Redox Chemistry in Polyanionic Cathode by Increasing Entropy.
    Li H; Xu M; Long H; Zheng J; Zhang L; Li S; Guan C; Lai Y; Zhang Z
    Adv Sci (Weinh); 2022 Sep; 9(25):e2202082. PubMed ID: 35778829
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly Stable and High Rate-Performance Na-Ion Batteries Using Polyanionic Anthraquinone as the Organic Cathode.
    Tang W; Liang R; Li D; Yu Q; Hu J; Cao B; Fan C
    ChemSusChem; 2019 May; 12(10):2181-2185. PubMed ID: 30896083
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A versatile single molecular precursor for the synthesis of layered oxide cathode materials for Li-ion batteries.
    Li M; Liu J; Liu T; Zhang M; Pan F
    Chem Commun (Camb); 2018 Feb; 54(11):1331-1334. PubMed ID: 29349459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.